Spaces:
Running
Running
Update rag_utils.py
Browse files- rag_utils.py +26 -11
rag_utils.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
|
|
|
2 |
import faiss
|
3 |
import pickle
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
-
import torch
|
7 |
import numpy as np
|
|
|
|
|
|
|
8 |
|
9 |
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
|
10 |
index = faiss.read_index(index_path)
|
@@ -13,19 +14,33 @@ def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss
|
|
13 |
return index, documents
|
14 |
|
15 |
def get_embedding_model():
|
16 |
-
|
|
|
|
|
17 |
|
18 |
def query_index(question, index, documents, model, k=3):
|
19 |
question_embedding = model.encode([question])
|
20 |
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
|
21 |
-
|
22 |
-
return results
|
23 |
|
24 |
def generate_answer(question, context):
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
|
29 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
30 |
-
outputs = model.generate(**inputs, max_new_tokens=256)
|
|
|
|
|
31 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
1 |
|
2 |
+
import os
|
3 |
import faiss
|
4 |
import pickle
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
+
import torch
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
|
11 |
index = faiss.read_index(index_path)
|
|
|
14 |
return index, documents
|
15 |
|
16 |
def get_embedding_model():
|
17 |
+
# Pas besoin de token ici, modèle public
|
18 |
+
print("✅ Chargement de l'encodeur multi-qa-MiniLM-L6-cos-v1")
|
19 |
+
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
20 |
|
21 |
def query_index(question, index, documents, model, k=3):
|
22 |
question_embedding = model.encode([question])
|
23 |
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
|
24 |
+
return [documents[i] for i in indices[0]]
|
|
|
25 |
|
26 |
def generate_answer(question, context):
|
27 |
+
token = os.getenv("HUGGINGFACE") # requis pour Mistral
|
28 |
+
model_id = "mgoogle/flan-t5-base"
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
32 |
+
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
token=token,
|
36 |
+
device_map="auto",
|
37 |
+
torch_dtype=torch.float16
|
38 |
+
)
|
39 |
+
|
40 |
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device)
|
42 |
+
outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)
|
43 |
+
print("🔍 Contexte utilisé pour la génération :")
|
44 |
+
print(context[:500])
|
45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
|