Spaces:
Sleeping
Sleeping
# ProteinMPNN | |
To train/retrain ProteinMPNN clone this github repo and install Python>=3.0, PyTorch, Numpy. | |
The multi-chain training data (16.5 GB, PDB biounits, 2021 August 2) can be downloaded from here: `https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02.tar.gz`; The small subsample (47 MB) of this data for testing purposes can be downloaded from here: `https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02_sample.tar.gz` | |
``` | |
Training set for ProteinMPNN curated by Ivan Anishchanko. | |
Each PDB entry is represented as a collection of .pt files: | |
PDBID_CHAINID.pt - contains CHAINID chain from PDBID | |
PDBID.pt - metadata and information on biological assemblies | |
PDBID_CHAINID.pt has the following fields: | |
seq - amino acid sequence (string) | |
xyz - atomic coordinates [L,14,3] | |
mask - boolean mask [L,14] | |
bfac - temperature factors [L,14] | |
occ - occupancy [L,14] (is 1 for most atoms, <1 if alternative conformations are present) | |
PDBID.pt: | |
method - experimental method (str) | |
date - deposition date (str) | |
resolution - resolution (float) | |
chains - list of CHAINIDs (there is a corresponding PDBID_CHAINID.pt file for each of these) | |
tm - pairwise similarity between chains (TM-score,seq.id.,rmsd from TM-align) [num_chains,num_chains,3] | |
asmb_ids - biounit IDs as in the PDB (list of str) | |
asmb_details - how the assembly was identified: author, or software, or smth else (list of str) | |
asmb_method - PISA or smth else (list of str) | |
asmb_chains - list of chains which each biounit is composed of (list of str, each str contains comma separated CHAINIDs) | |
asmb_xformIDX - (one per biounit) xforms to be applied to chains from asmb_chains[IDX], [n,4,4] | |
[n,:3,:3] - rotation matrices | |
[n,3,:3] - translation vectors | |
list.csv: | |
CHAINID - chain label, PDBID_CHAINID | |
DEPOSITION - deposition date | |
RESOLUTION - structure resolution | |
HASH - unique 6-digit hash for the sequence | |
CLUSTER - sequence cluster the chain belongs to (clusters were generated at seqID=30%) | |
SEQUENCE - reference amino acid sequence | |
valid_clusters.txt - clusters used for validation | |
test_clusters.txt - clusters used for testing | |
``` | |
Code organization: | |
* `training.py` - the main script to train the model | |
* `model_utils.py` - utility functions and classes for the model | |
* `utils.py` - utility functions and classes for data loading | |
* `exp_020/` - sample outputs | |
* `submit_exp_020.sh` - sample SLURM submit script | |
----------------------------------------------------------------------------------------------------- | |
Input flags for `training.py`: | |
``` | |
argparser.add_argument("--path_for_training_data", type=str, default="my_path/pdb_2021aug02", help="path for loading training data") | |
argparser.add_argument("--path_for_outputs", type=str, default="./test", help="path for logs and model weights") | |
argparser.add_argument("--previous_checkpoint", type=str, default="", help="path for previous model weights, e.g. file.pt") | |
argparser.add_argument("--num_epochs", type=int, default=200, help="number of epochs to train for") | |
argparser.add_argument("--save_model_every_n_epochs", type=int, default=10, help="save model weights every n epochs") | |
argparser.add_argument("--reload_data_every_n_epochs", type=int, default=2, help="reload training data every n epochs") | |
argparser.add_argument("--num_examples_per_epoch", type=int, default=1000000, help="number of training example to load for one epoch") | |
argparser.add_argument("--batch_size", type=int, default=10000, help="number of tokens for one batch") | |
argparser.add_argument("--max_protein_length", type=int, default=10000, help="maximum length of the protein complext") | |
argparser.add_argument("--hidden_dim", type=int, default=128, help="hidden model dimension") | |
argparser.add_argument("--num_encoder_layers", type=int, default=3, help="number of encoder layers") | |
argparser.add_argument("--num_decoder_layers", type=int, default=3, help="number of decoder layers") | |
argparser.add_argument("--num_neighbors", type=int, default=48, help="number of neighbors for the sparse graph") | |
argparser.add_argument("--dropout", type=float, default=0.1, help="dropout level; 0.0 means no dropout") | |
argparser.add_argument("--backbone_noise", type=float, default=0.2, help="amount of noise added to backbone during training") | |
argparser.add_argument("--rescut", type=float, default=3.5, help="PDB resolution cutoff") | |
argparser.add_argument("--debug", type=bool, default=False, help="minimal data loading for debugging") | |
argparser.add_argument("--gradient_norm", type=float, default=-1.0, help="clip gradient norm, set to negative to omit clipping") | |
argparser.add_argument("--mixed_precision", type=bool, default=True, help="train with mixed precision") | |
``` | |
----------------------------------------------------------------------------------------------------- | |
For example to make a conda environment to run ProteinMPNN: | |
* `conda create --name mlfold` - this creates conda environment called `mlfold` | |
* `source activate mlfold` - this activate environment | |
* `conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch` - install pytorch following steps from https://pytorch.org/ | |
----------------------------------------------------------------------------------------------------- | |
Models provided for the vanilla MPNN were trained with default flags: | |
* `v_48_002.pt` - `--num_neighbors 48 --backbone_noise 0.02 --num_epochs 150` | |
* `v_48_010.pt` - `--num_neighbors 48 --backbone_noise 0.10 --num_epochs 150` | |
* `v_48_020.pt` - `--num_neighbors 48 --backbone_noise 0.20 --num_epochs 150` | |
----------------------------------------------------------------------------------------------------- | |
``` | |
@article{dauparas2022robust, | |
title={Robust deep learning--based protein sequence design using ProteinMPNN}, | |
author={Dauparas, Justas and Anishchenko, Ivan and Bennett, Nathaniel and Bai, Hua and Ragotte, Robert J and Milles, Lukas F and Wicky, Basile IM and Courbet, Alexis and de Haas, Rob J and Bethel, Neville and others}, | |
journal={Science}, | |
volume={378}, | |
number={6615}, | |
pages={49--56}, | |
year={2022}, | |
publisher={American Association for the Advancement of Science} | |
} | |
``` | |
----------------------------------------------------------------------------------------------------- | |