Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
5.12.0
ProteinMPNN
To train/retrain ProteinMPNN clone this github repo and install Python>=3.0, PyTorch, Numpy.
The multi-chain training data (16.5 GB, PDB biounits, 2021 August 2) can be downloaded from here: https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02.tar.gz
; The small subsample (47 MB) of this data for testing purposes can be downloaded from here: https://files.ipd.uw.edu/pub/training_sets/pdb_2021aug02_sample.tar.gz
Training set for ProteinMPNN curated by Ivan Anishchanko.
Each PDB entry is represented as a collection of .pt files:
PDBID_CHAINID.pt - contains CHAINID chain from PDBID
PDBID.pt - metadata and information on biological assemblies
PDBID_CHAINID.pt has the following fields:
seq - amino acid sequence (string)
xyz - atomic coordinates [L,14,3]
mask - boolean mask [L,14]
bfac - temperature factors [L,14]
occ - occupancy [L,14] (is 1 for most atoms, <1 if alternative conformations are present)
PDBID.pt:
method - experimental method (str)
date - deposition date (str)
resolution - resolution (float)
chains - list of CHAINIDs (there is a corresponding PDBID_CHAINID.pt file for each of these)
tm - pairwise similarity between chains (TM-score,seq.id.,rmsd from TM-align) [num_chains,num_chains,3]
asmb_ids - biounit IDs as in the PDB (list of str)
asmb_details - how the assembly was identified: author, or software, or smth else (list of str)
asmb_method - PISA or smth else (list of str)
asmb_chains - list of chains which each biounit is composed of (list of str, each str contains comma separated CHAINIDs)
asmb_xformIDX - (one per biounit) xforms to be applied to chains from asmb_chains[IDX], [n,4,4]
[n,:3,:3] - rotation matrices
[n,3,:3] - translation vectors
list.csv:
CHAINID - chain label, PDBID_CHAINID
DEPOSITION - deposition date
RESOLUTION - structure resolution
HASH - unique 6-digit hash for the sequence
CLUSTER - sequence cluster the chain belongs to (clusters were generated at seqID=30%)
SEQUENCE - reference amino acid sequence
valid_clusters.txt - clusters used for validation
test_clusters.txt - clusters used for testing
Code organization:
* training.py
- the main script to train the model
* model_utils.py
- utility functions and classes for the model
* utils.py
- utility functions and classes for data loading
* exp_020/
- sample outputs
* submit_exp_020.sh
- sample SLURM submit script
Input flags for training.py
:
argparser.add_argument("--path_for_training_data", type=str, default="my_path/pdb_2021aug02", help="path for loading training data") argparser.add_argument("--path_for_outputs", type=str, default="./test", help="path for logs and model weights") argparser.add_argument("--previous_checkpoint", type=str, default="", help="path for previous model weights, e.g. file.pt") argparser.add_argument("--num_epochs", type=int, default=200, help="number of epochs to train for") argparser.add_argument("--save_model_every_n_epochs", type=int, default=10, help="save model weights every n epochs") argparser.add_argument("--reload_data_every_n_epochs", type=int, default=2, help="reload training data every n epochs") argparser.add_argument("--num_examples_per_epoch", type=int, default=1000000, help="number of training example to load for one epoch") argparser.add_argument("--batch_size", type=int, default=10000, help="number of tokens for one batch") argparser.add_argument("--max_protein_length", type=int, default=10000, help="maximum length of the protein complext") argparser.add_argument("--hidden_dim", type=int, default=128, help="hidden model dimension") argparser.add_argument("--num_encoder_layers", type=int, default=3, help="number of encoder layers") argparser.add_argument("--num_decoder_layers", type=int, default=3, help="number of decoder layers") argparser.add_argument("--num_neighbors", type=int, default=48, help="number of neighbors for the sparse graph") argparser.add_argument("--dropout", type=float, default=0.1, help="dropout level; 0.0 means no dropout") argparser.add_argument("--backbone_noise", type=float, default=0.2, help="amount of noise added to backbone during training") argparser.add_argument("--rescut", type=float, default=3.5, help="PDB resolution cutoff") argparser.add_argument("--debug", type=bool, default=False, help="minimal data loading for debugging") argparser.add_argument("--gradient_norm", type=float, default=-1.0, help="clip gradient norm, set to negative to omit clipping") argparser.add_argument("--mixed_precision", type=bool, default=True, help="train with mixed precision")
For example to make a conda environment to run ProteinMPNN:
* conda create --name mlfold
- this creates conda environment called mlfold
* source activate mlfold
- this activate environment
* conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
- install pytorch following steps from https://pytorch.org/
Models provided for the vanilla MPNN were trained with default flags:
* v_48_002.pt
- --num_neighbors 48 --backbone_noise 0.02 --num_epochs 150
* v_48_010.pt
- --num_neighbors 48 --backbone_noise 0.10 --num_epochs 150
* v_48_020.pt
- --num_neighbors 48 --backbone_noise 0.20 --num_epochs 150
@article{dauparas2022robust,
title={Robust deep learning--based protein sequence design using ProteinMPNN},
author={Dauparas, Justas and Anishchenko, Ivan and Bennett, Nathaniel and Bai, Hua and Ragotte, Robert J and Milles, Lukas F and Wicky, Basile IM and Courbet, Alexis and de Haas, Rob J and Bethel, Neville and others},
journal={Science},
volume={378},
number={6615},
pages={49--56},
year={2022},
publisher={American Association for the Advancement of Science}
}