similarity / similarity.py
MarioPrzBasto's picture
Update similarity.py
7c0e188 verified
raw
history blame
7.48 kB
import base64
import cv2
import numpy as np
import requests
import logging
import tempfile
import subprocess
import os
from typing import List
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
from skimage.metrics import structural_similarity as ssim
from models import RequestModel, ResponseModel
from PIL import Image
from io import BytesIO
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def preprocess_image_for_mobilenet(image):
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_sim(img1, img2, img1AssetCode, img2AssetCode):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0]
sim_score = (sim + 1) * 50
print(f"MobileNet similarity score from {img1AssetCode} and {img2AssetCode} is {sim_score}")
return float(sim_score)
except Exception as e:
logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
return 0
def orb_sim(img1, img2, img1AssetCode, img2AssetCode):
score = 0
try:
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) > 0:
score = (len(similar_regions) / len(matches)) * 100
if (score > 0):
logging.info(f"Orb score from {img1AssetCode} and {img2AssetCode} is {score}")
except Exception as e:
logging.error("Erro ao verificar similaridade ORB", exc_info=True)
return 1 if 0 < score < 1 else score
def ssim_sim(img1, img2):
s, _ = ssim(img1, img2, full=True)
return (s + 1) * 50
def load_image_url(source, assetCode, contentType=None, ffmpeg_path='ffmpeg', frame_time=1):
Image.MAX_IMAGE_PIXELS = None
def extract_frame_from_video(video_path_or_url, time_sec):
print(f"[INFO] A extrair frame do vídeo: {video_path_or_url} no segundo {time_sec}")
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
frame_path = temp_frame.name
command = [
ffmpeg_path,
"-ss", str(time_sec),
"-i", video_path_or_url,
"-frames:v", "1",
"-q:v", "2",
"-y",
frame_path
]
print(f"[DEBUG] Comando ffmpeg: {' '.join(command)}")
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode != 0:
print(f"[ERRO] ffmpeg falhou com código {result.returncode}")
print(f"[ERRO] stderr: {result.stderr.decode('utf-8')}")
raise RuntimeError("Erro ao extrair frame com ffmpeg.")
if not os.path.exists(frame_path):
print("[ERRO] Frame não criado. Verifica se o caminho do vídeo está correto e acessível.")
raise ValueError("Frame não encontrado após execução do ffmpeg.")
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
os.remove(frame_path)
if frame is None:
print("[ERRO] Falha ao ler frame extraído com OpenCV.")
raise ValueError("Erro ao carregar frame extraído.")
print(f"[SUCESSO] Frame extraído com sucesso de {video_path_or_url}")
return frame
try:
if source.startswith('http'):
print(f"[INFO] Content-Type de {assetCode} é {contentType}")
if contentType and contentType.startswith('video'):
return extract_frame_from_video(source, frame_time)
print(f"[INFO] A carregar imagem {assetCode} a partir de URL")
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
return img
else:
print(f"[INFO] A tentar carregar base64 de {assetCode} como imagem ou vídeo.")
try:
img_bytes = base64.b64decode(source)
if contentType and contentType.startswith('image'):
print(f"[INFO] Base64 de {assetCode} identificado como imagem")
img = Image.open(BytesIO(img_bytes))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
else:
print(f"[INFO] Base64 de {assetCode} identificado como vídeo")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
temp_video.write(img_bytes)
temp_video_path = temp_video.name
frame = extract_frame_from_video(temp_video_path, frame_time)
os.remove(temp_video_path)
return frame
except Exception as e:
print(f"[ERRO] Falha ao processar base64 de {assetCode}: {e}")
raise
except Exception as e:
print(f"[ERRO] Falha ao carregar imagem para {assetCode}: {e}")
return None
def check_similarity(images: List[RequestModel]):
logging.info(f"Checking similarity for main source with resource id {images[0].originId}")
original_image = load_image_url(images[0].source, images[0].assetCode)
original_image_shape = original_image.shape
results = []
for i in range(1, len(images)):
try:
image = load_image_url(images[i].source, images[i].source)
image = cv2.resize(image, original_image_shape[::-1])
similarity_score = ssim_sim(original_image, image)
similarity_orb_score = orb_sim(original_image, image, images[0].assetCode, images[i].assetCode)
similarity_mobilenet_score = mobilenet_sim(original_image, image, images[0].assetCode, images[i].assetCode)
except Exception as e:
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
similarity_score = 0
similarity_orb_score = 0
similarity_mobilenet_score = 0
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score)
results.append(response)
return results