Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import base64 | |
import cv2 | |
import numpy as np | |
import requests | |
import logging | |
import tempfile | |
import subprocess | |
import os | |
from typing import List | |
from tensorflow.keras.applications import MobileNetV2 | |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from sklearn.metrics.pairwise import cosine_similarity | |
from skimage.metrics import structural_similarity as ssim | |
from models import RequestModel, ResponseModel | |
from PIL import Image | |
from io import BytesIO | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg') | |
def preprocess_image_for_mobilenet(image): | |
if len(image.shape) == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
elif image.shape[2] == 1: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
else: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
image = cv2.resize(image, (224, 224)) | |
image = img_to_array(image) | |
image = np.expand_dims(image, axis=0) | |
image = preprocess_input(image) | |
return image | |
def mobilenet_sim(img1, img2, img1AssetCode, img2AssetCode): | |
try: | |
img1_proc = preprocess_image_for_mobilenet(img1) | |
img2_proc = preprocess_image_for_mobilenet(img2) | |
feat1 = mobilenet.predict(img1_proc, verbose=0) | |
feat2 = mobilenet.predict(img2_proc, verbose=0) | |
sim = cosine_similarity(feat1, feat2)[0][0] | |
sim_score = (sim + 1) * 50 | |
print(f"MobileNet similarity score from {img1AssetCode} and {img2AssetCode} is {sim_score}") | |
return float(sim_score) | |
except Exception as e: | |
logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True) | |
return 0 | |
def orb_sim(img1, img2, img1AssetCode, img2AssetCode): | |
score = 0 | |
try: | |
orb = cv2.ORB_create() | |
kp_a, desc_a = orb.detectAndCompute(img1, None) | |
kp_b, desc_b = orb.detectAndCompute(img2, None) | |
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) | |
matches = bf.match(desc_a, desc_b) | |
similar_regions = [i for i in matches if i.distance < 20] | |
if len(matches) > 0: | |
score = (len(similar_regions) / len(matches)) * 100 | |
if (score > 0): | |
logging.info(f"Orb score from {img1AssetCode} and {img2AssetCode} is {score}") | |
except Exception as e: | |
logging.error("Erro ao verificar similaridade ORB", exc_info=True) | |
return 1 if 0 < score < 1 else score | |
def ssim_sim(img1, img2): | |
s, _ = ssim(img1, img2, full=True) | |
return (s + 1) * 50 | |
def load_image_url(source, assetCode, contentType=None, ffmpeg_path='ffmpeg', frame_time=1): | |
Image.MAX_IMAGE_PIXELS = None | |
def extract_frame_from_video(video_path_or_url, time_sec): | |
print(f"[INFO] A extrair frame do vídeo: {video_path_or_url} no segundo {time_sec}") | |
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame: | |
frame_path = temp_frame.name | |
command = [ | |
ffmpeg_path, | |
"-ss", str(time_sec), | |
"-i", video_path_or_url, | |
"-frames:v", "1", | |
"-q:v", "2", | |
"-y", | |
frame_path | |
] | |
print(f"[DEBUG] Comando ffmpeg: {' '.join(command)}") | |
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
if result.returncode != 0: | |
print(f"[ERRO] ffmpeg falhou com código {result.returncode}") | |
print(f"[ERRO] stderr: {result.stderr.decode('utf-8')}") | |
raise RuntimeError("Erro ao extrair frame com ffmpeg.") | |
if not os.path.exists(frame_path): | |
print("[ERRO] Frame não criado. Verifica se o caminho do vídeo está correto e acessível.") | |
raise ValueError("Frame não encontrado após execução do ffmpeg.") | |
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE) | |
os.remove(frame_path) | |
if frame is None: | |
print("[ERRO] Falha ao ler frame extraído com OpenCV.") | |
raise ValueError("Erro ao carregar frame extraído.") | |
print(f"[SUCESSO] Frame extraído com sucesso de {video_path_or_url}") | |
return frame | |
try: | |
if source.startswith('http'): | |
print(f"[INFO] Content-Type de {assetCode} é {contentType}") | |
if contentType and contentType.startswith('video'): | |
return extract_frame_from_video(source, frame_time) | |
print(f"[INFO] A carregar imagem {assetCode} a partir de URL") | |
response = requests.get(source) | |
img = np.asarray(bytearray(response.content), dtype=np.uint8) | |
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) | |
return img | |
else: | |
print(f"[INFO] A tentar carregar base64 de {assetCode} como imagem ou vídeo.") | |
try: | |
img_bytes = base64.b64decode(source) | |
if contentType and contentType.startswith('image'): | |
print(f"[INFO] Base64 de {assetCode} identificado como imagem") | |
img = Image.open(BytesIO(img_bytes)) | |
img = np.array(img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
return img | |
else: | |
print(f"[INFO] Base64 de {assetCode} identificado como vídeo") | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video: | |
temp_video.write(img_bytes) | |
temp_video_path = temp_video.name | |
frame = extract_frame_from_video(temp_video_path, frame_time) | |
os.remove(temp_video_path) | |
return frame | |
except Exception as e: | |
print(f"[ERRO] Falha ao processar base64 de {assetCode}: {e}") | |
raise | |
except Exception as e: | |
print(f"[ERRO] Falha ao carregar imagem para {assetCode}: {e}") | |
return None | |
def check_similarity(images: List[RequestModel]): | |
logging.info(f"Checking similarity for main source with resource id {images[0].originId}") | |
original_image = load_image_url(images[0].source, images[0].assetCode) | |
original_image_shape = original_image.shape | |
results = [] | |
for i in range(1, len(images)): | |
try: | |
image = load_image_url(images[i].source, images[i].source) | |
image = cv2.resize(image, original_image_shape[::-1]) | |
similarity_score = ssim_sim(original_image, image) | |
similarity_orb_score = orb_sim(original_image, image, images[0].assetCode, images[i].assetCode) | |
similarity_mobilenet_score = mobilenet_sim(original_image, image, images[0].assetCode, images[i].assetCode) | |
except Exception as e: | |
logging.error(f"Error loading image for resource id {images[i].originId} : {e}") | |
similarity_score = 0 | |
similarity_orb_score = 0 | |
similarity_mobilenet_score = 0 | |
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence, | |
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score) | |
results.append(response) | |
return results |