File size: 7,477 Bytes
2ad5883
 
 
 
b4c89f9
0db380f
 
7c0e188
b4c89f9
 
 
 
 
 
 
2ad5883
7c3f871
b9177b9
 
 
3d6ae23
2ad5883
b4c89f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274bce3
b4c89f9
 
 
 
 
 
 
 
 
274bce3
b4c89f9
 
 
 
 
274bce3
37a0d36
 
 
 
 
 
 
 
 
 
 
0773ca1
7242758
274bce3
37a0d36
 
 
06cdb0c
37a0d36
b4c89f9
 
 
 
9da2db4
4381896
b9177b9
 
f87d9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad5883
f87d9f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad5883
 
b9177b9
2ad5883
6ce3ea3
2ad5883
 
 
 
 
b9177b9
6ce3ea3
b9177b9
b4c89f9
 
c7afcdf
 
b9177b9
 
 
9da2db4
4c1d7f9
b9177b9
e5555a2
b4c89f9
2ad5883
b9177b9
2ad5883
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import base64
import cv2
import numpy as np
import requests
import logging
import tempfile
import subprocess
import os
from typing import List
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
from skimage.metrics import structural_similarity as ssim
from models import RequestModel, ResponseModel
from PIL import Image
from io import BytesIO

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')

def preprocess_image_for_mobilenet(image):
    if len(image.shape) == 2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    elif image.shape[2] == 1:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    else:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    image = cv2.resize(image, (224, 224))
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)
    image = preprocess_input(image)

    return image

def mobilenet_sim(img1, img2, img1AssetCode, img2AssetCode):
    try:
        img1_proc = preprocess_image_for_mobilenet(img1)
        img2_proc = preprocess_image_for_mobilenet(img2)

        feat1 = mobilenet.predict(img1_proc, verbose=0)
        feat2 = mobilenet.predict(img2_proc, verbose=0)

        sim = cosine_similarity(feat1, feat2)[0][0] 
        sim_score = (sim + 1) * 50 
        print(f"MobileNet similarity score from {img1AssetCode} and {img2AssetCode} is {sim_score}")
        return float(sim_score)
    except Exception as e:
        logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
        return 0

def orb_sim(img1, img2, img1AssetCode, img2AssetCode):
    score = 0

    try:
        orb = cv2.ORB_create()
        kp_a, desc_a = orb.detectAndCompute(img1, None)
        kp_b, desc_b = orb.detectAndCompute(img2, None)
    
        bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
        matches = bf.match(desc_a, desc_b)
        similar_regions = [i for i in matches if i.distance < 20]
        if len(matches) > 0:
            score = (len(similar_regions) / len(matches)) * 100
            if (score > 0):
                logging.info(f"Orb score from {img1AssetCode} and {img2AssetCode} is {score}")
    except Exception as e:
        logging.error("Erro ao verificar similaridade ORB", exc_info=True)

    return 1 if 0 < score < 1 else score

def ssim_sim(img1, img2):
    s, _ = ssim(img1, img2, full=True)
    return (s + 1) * 50


def load_image_url(source, assetCode, contentType=None, ffmpeg_path='ffmpeg', frame_time=1):
    Image.MAX_IMAGE_PIXELS = None

    def extract_frame_from_video(video_path_or_url, time_sec):
        print(f"[INFO] A extrair frame do vídeo: {video_path_or_url} no segundo {time_sec}")
        
        with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
            frame_path = temp_frame.name

        command = [
            ffmpeg_path,
            "-ss", str(time_sec),
            "-i", video_path_or_url,
            "-frames:v", "1",
            "-q:v", "2",
            "-y",
            frame_path
        ]

        print(f"[DEBUG] Comando ffmpeg: {' '.join(command)}")

        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

        if result.returncode != 0:
            print(f"[ERRO] ffmpeg falhou com código {result.returncode}")
            print(f"[ERRO] stderr: {result.stderr.decode('utf-8')}")
            raise RuntimeError("Erro ao extrair frame com ffmpeg.")

        if not os.path.exists(frame_path):
            print("[ERRO] Frame não criado. Verifica se o caminho do vídeo está correto e acessível.")
            raise ValueError("Frame não encontrado após execução do ffmpeg.")

        frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
        os.remove(frame_path)

        if frame is None:
            print("[ERRO] Falha ao ler frame extraído com OpenCV.")
            raise ValueError("Erro ao carregar frame extraído.")

        print(f"[SUCESSO] Frame extraído com sucesso de {video_path_or_url}")
        return frame

    try:
        if source.startswith('http'):
            print(f"[INFO] Content-Type de {assetCode} é {contentType}")

            if contentType and contentType.startswith('video'):
                return extract_frame_from_video(source, frame_time)

            print(f"[INFO] A carregar imagem {assetCode} a partir de URL")
            response = requests.get(source)
            img = np.asarray(bytearray(response.content), dtype=np.uint8)
            img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
            return img

        else:
            print(f"[INFO] A tentar carregar base64 de {assetCode} como imagem ou vídeo.")

            try:
                img_bytes = base64.b64decode(source)

                if contentType and contentType.startswith('image'):
                    print(f"[INFO] Base64 de {assetCode} identificado como imagem")
                    img = Image.open(BytesIO(img_bytes))
                    img = np.array(img)
                    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
                    return img
                else:
                    print(f"[INFO] Base64 de {assetCode} identificado como vídeo")
                    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
                        temp_video.write(img_bytes)
                        temp_video_path = temp_video.name

                    frame = extract_frame_from_video(temp_video_path, frame_time)
                    os.remove(temp_video_path)
                    return frame

            except Exception as e:
                print(f"[ERRO] Falha ao processar base64 de {assetCode}: {e}")
                raise

    except Exception as e:
        print(f"[ERRO] Falha ao carregar imagem para {assetCode}: {e}")
        return None

def check_similarity(images: List[RequestModel]):
    logging.info(f"Checking similarity for main source with resource id {images[0].originId}")

    original_image = load_image_url(images[0].source, images[0].assetCode)
    original_image_shape = original_image.shape

    results = []

    for i in range(1, len(images)):
        try:
            image = load_image_url(images[i].source, images[i].source)
            image = cv2.resize(image, original_image_shape[::-1])
        
            similarity_score = ssim_sim(original_image, image)
            similarity_orb_score = orb_sim(original_image, image, images[0].assetCode, images[i].assetCode)
            similarity_mobilenet_score = mobilenet_sim(original_image, image, images[0].assetCode, images[i].assetCode)
        except Exception as e:
            logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
            similarity_score = 0
            similarity_orb_score = 0
            similarity_mobilenet_score = 0

        response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
                                 assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score)
        results.append(response)

    return results