Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,477 Bytes
2ad5883 b4c89f9 0db380f 7c0e188 b4c89f9 2ad5883 7c3f871 b9177b9 3d6ae23 2ad5883 b4c89f9 274bce3 b4c89f9 274bce3 b4c89f9 274bce3 37a0d36 0773ca1 7242758 274bce3 37a0d36 06cdb0c 37a0d36 b4c89f9 9da2db4 4381896 b9177b9 f87d9f1 2ad5883 f87d9f1 2ad5883 b9177b9 2ad5883 6ce3ea3 2ad5883 b9177b9 6ce3ea3 b9177b9 b4c89f9 c7afcdf b9177b9 9da2db4 4c1d7f9 b9177b9 e5555a2 b4c89f9 2ad5883 b9177b9 2ad5883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import base64
import cv2
import numpy as np
import requests
import logging
import tempfile
import subprocess
import os
from typing import List
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
from skimage.metrics import structural_similarity as ssim
from models import RequestModel, ResponseModel
from PIL import Image
from io import BytesIO
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def preprocess_image_for_mobilenet(image):
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_sim(img1, img2, img1AssetCode, img2AssetCode):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0]
sim_score = (sim + 1) * 50
print(f"MobileNet similarity score from {img1AssetCode} and {img2AssetCode} is {sim_score}")
return float(sim_score)
except Exception as e:
logging.error("Erro ao calcular similaridade com MobileNet", exc_info=True)
return 0
def orb_sim(img1, img2, img1AssetCode, img2AssetCode):
score = 0
try:
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) > 0:
score = (len(similar_regions) / len(matches)) * 100
if (score > 0):
logging.info(f"Orb score from {img1AssetCode} and {img2AssetCode} is {score}")
except Exception as e:
logging.error("Erro ao verificar similaridade ORB", exc_info=True)
return 1 if 0 < score < 1 else score
def ssim_sim(img1, img2):
s, _ = ssim(img1, img2, full=True)
return (s + 1) * 50
def load_image_url(source, assetCode, contentType=None, ffmpeg_path='ffmpeg', frame_time=1):
Image.MAX_IMAGE_PIXELS = None
def extract_frame_from_video(video_path_or_url, time_sec):
print(f"[INFO] A extrair frame do vídeo: {video_path_or_url} no segundo {time_sec}")
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
frame_path = temp_frame.name
command = [
ffmpeg_path,
"-ss", str(time_sec),
"-i", video_path_or_url,
"-frames:v", "1",
"-q:v", "2",
"-y",
frame_path
]
print(f"[DEBUG] Comando ffmpeg: {' '.join(command)}")
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode != 0:
print(f"[ERRO] ffmpeg falhou com código {result.returncode}")
print(f"[ERRO] stderr: {result.stderr.decode('utf-8')}")
raise RuntimeError("Erro ao extrair frame com ffmpeg.")
if not os.path.exists(frame_path):
print("[ERRO] Frame não criado. Verifica se o caminho do vídeo está correto e acessível.")
raise ValueError("Frame não encontrado após execução do ffmpeg.")
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
os.remove(frame_path)
if frame is None:
print("[ERRO] Falha ao ler frame extraído com OpenCV.")
raise ValueError("Erro ao carregar frame extraído.")
print(f"[SUCESSO] Frame extraído com sucesso de {video_path_or_url}")
return frame
try:
if source.startswith('http'):
print(f"[INFO] Content-Type de {assetCode} é {contentType}")
if contentType and contentType.startswith('video'):
return extract_frame_from_video(source, frame_time)
print(f"[INFO] A carregar imagem {assetCode} a partir de URL")
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
return img
else:
print(f"[INFO] A tentar carregar base64 de {assetCode} como imagem ou vídeo.")
try:
img_bytes = base64.b64decode(source)
if contentType and contentType.startswith('image'):
print(f"[INFO] Base64 de {assetCode} identificado como imagem")
img = Image.open(BytesIO(img_bytes))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
else:
print(f"[INFO] Base64 de {assetCode} identificado como vídeo")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
temp_video.write(img_bytes)
temp_video_path = temp_video.name
frame = extract_frame_from_video(temp_video_path, frame_time)
os.remove(temp_video_path)
return frame
except Exception as e:
print(f"[ERRO] Falha ao processar base64 de {assetCode}: {e}")
raise
except Exception as e:
print(f"[ERRO] Falha ao carregar imagem para {assetCode}: {e}")
return None
def check_similarity(images: List[RequestModel]):
logging.info(f"Checking similarity for main source with resource id {images[0].originId}")
original_image = load_image_url(images[0].source, images[0].assetCode)
original_image_shape = original_image.shape
results = []
for i in range(1, len(images)):
try:
image = load_image_url(images[i].source, images[i].source)
image = cv2.resize(image, original_image_shape[::-1])
similarity_score = ssim_sim(original_image, image)
similarity_orb_score = orb_sim(original_image, image, images[0].assetCode, images[i].assetCode)
similarity_mobilenet_score = mobilenet_sim(original_image, image, images[0].assetCode, images[i].assetCode)
except Exception as e:
logging.error(f"Error loading image for resource id {images[i].originId} : {e}")
similarity_score = 0
similarity_orb_score = 0
similarity_mobilenet_score = 0
response = ResponseModel(originId=images[i].originId, source=images[i].source, sequence=images[i].sequence,
assetCode=images[i].assetCode, similarity=similarity_score, similarityOrb=similarity_orb_score, similarityMobileNet=similarity_mobilenet_score)
results.append(response)
return results |