Spaces:
Running
Running
File size: 10,177 Bytes
38a2ef1 0d2544a de0f224 e963852 d1543f6 f1ea500 ef65227 d1543f6 e963852 1ff63a0 45b771c 10a5298 45b771c 7754007 45b771c 38a2ef1 35d85ac 38a2ef1 45b771c 38a2ef1 45b771c 1ff63a0 4387e3e 1ff63a0 764f911 1ff63a0 9e082f7 a0787f2 d1543f6 e5c9354 f1ea500 e5c9354 f1ea500 e5c9354 f1ea500 c2df641 e5c9354 d1543f6 e5c9354 a0787f2 e5c9354 9e082f7 e5c9354 9e082f7 e5c9354 d1543f6 e5c9354 9e082f7 e5c9354 9e082f7 e5c9354 9e082f7 e5c9354 9c36111 0d2544a 14b8c90 ae633a2 c8aef77 ef65227 38a2ef1 d4059e5 db63399 45b771c 1ff63a0 45b771c 80f59d0 45b771c 4387e3e 45b771c c8aef77 45b771c 0d2544a 38a2ef1 0d2544a 38a2ef1 0d2544a 38a2ef1 0d2544a 8f0b65d 2a8236b 8f0b65d ce0e810 8f0b65d f76996f 8f0b65d ce0e810 8f0b65d f76996f 8f0b65d f76996f 8f0b65d f76996f 8f0b65d 38a2ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from typing import List
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from models import RequestModel
import os
import json
import cv2
import numpy as np
import base64
import requests
import mimetypes
import tempfile
import subprocess
import uuid
from PIL import Image
from io import BytesIO
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
BASE_DIR = "/tmp/data"
app = FastAPI()
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def orb_sim(img1, img2):
# ORB
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
# Brute-force matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) == 0:
return 0
return len(similar_regions) / len(matches)
def preprocess_image_for_mobilenet(image):
# Garantir que a imagem tem 3 canais
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Redimensionar e preparar imagem
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_similarity(img1, img2):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0] # Valor entre -1 e 1
sim_score = (sim + 1) * 50 # Escalar para 0-100
return float(sim_score)
except Exception as e:
print("Erro ao calcular similaridade com MobileNet")
return 0
def load_image(source, assetCode, contentType=None, ffmpeg_path='ffmpeg', frame_time=1):
Image.MAX_IMAGE_PIXELS = None
def extract_frame_from_video(video_path_or_url, time_sec):
print(f"[INFO] A extrair frame do vídeo: {video_path_or_url} no segundo {time_sec}")
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
frame_path = temp_frame.name
command = [
ffmpeg_path,
"-ss", str(time_sec),
"-i", video_path_or_url,
"-frames:v", "1",
"-q:v", "2",
"-y",
frame_path
]
print(f"[DEBUG] Comando ffmpeg: {' '.join(command)}")
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode != 0:
print(f"[ERRO] ffmpeg falhou com código {result.returncode}")
print(f"[ERRO] stderr: {result.stderr.decode('utf-8')}")
raise RuntimeError("Erro ao extrair frame com ffmpeg.")
if not os.path.exists(frame_path):
print("[ERRO] Frame não criado. Verifica se o caminho do vídeo está correto e acessível.")
raise ValueError("Frame não encontrado após execução do ffmpeg.")
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
os.remove(frame_path)
if frame is None:
print("[ERRO] Falha ao ler frame extraído com OpenCV.")
raise ValueError("Erro ao carregar frame extraído.")
print(f"[SUCESSO] Frame extraído com sucesso de {video_path_or_url}")
return frame
try:
if source.startswith('http'):
print(f"[INFO] Content-Type de {assetCode} é {contentType}")
if contentType and contentType.startswith('video'):
return extract_frame_from_video(source, frame_time)
print(f"[INFO] A carregar imagem {assetCode} a partir de URL")
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
return img
else:
print(f"[INFO] A tentar carregar base64 de {assetCode} como imagem ou vídeo.")
try:
img_bytes = base64.b64decode(source)
if contentType and contentType.startswith('image'):
print(f"[INFO] Base64 de {assetCode} identificado como imagem")
img = Image.open(BytesIO(img_bytes))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
else:
print(f"[INFO] Base64 de {assetCode} identificado como vídeo")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
temp_video.write(img_bytes)
temp_video_path = temp_video.name
frame = extract_frame_from_video(temp_video_path, frame_time)
os.remove(temp_video_path)
return frame
except Exception as e:
print(f"[ERRO] Falha ao processar base64 de {assetCode}: {e}")
raise
except Exception as e:
print(f"[ERRO] Falha ao carregar imagem para {assetCode}: {e}")
return None
@app.post("/save")
async def save(image_data: RequestModel):
data_to_save = image_data.dict()
print("Recebido:", data_to_save)
os.makedirs(BASE_DIR, exist_ok=True)
filename = os.path.join(BASE_DIR, f"{image_data.originId}_{image_data.assetCode}_{uuid.uuid4().hex[:8]}.json")
img1 = load_image(image_data.originSource, f"origin {image_data.originSource}")
img2 = load_image(image_data.source, image_data.assetCode, image_data.contentType)
similarity_orb = None
similarity_mobilenet = None
if img1 is not None and img2 is not None:
similarity_orb = orb_sim(img1, img2)
similarity_mobilenet = mobilenet_similarity(img1, img2)
data_to_save = image_data.dict()
if similarity_orb is not None:
data_to_save["similarityOrb"] = similarity_orb
data_to_save["similarityMobilenet"] = similarity_mobilenet
with open(filename, "w") as f:
json.dump(data_to_save, f, indent=4)
return True
@app.get("/files")
async def list_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read() # Lê o conteúdo do ficheiro
# Tenta decodificar o conteúdo como JSON, se possível
try:
file_content_json = json.loads(file_content)
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
files_data.append({"filename": filename, "content": file_content}) # Se não for JSON, retorna o texto
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/similar")
async def list_similar_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
# Check for similarityOrb and filter
if "similarityOrb" in file_content_json and file_content_json["similarityOrb"] > 0:
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
pass # Skip files that are not valid JSON
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/find/{search}")
async def search_file(search: str):
try:
files_data = []
for filename in os.listdir(BASE_DIR):
if f"{search}" in filename and filename.endswith(".json"):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
files_data.append({"filename": filename, "content": file_content})
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado") |