similarity_dbg / main.py
MarioPrzBasto's picture
Update main.py
d1543f6 verified
raw
history blame
8.94 kB
from typing import List
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from models import RequestModel
import os
import json
import cv2
import numpy as np
import base64
import requests
import mimetypes
import tempfile
import subprocess
from PIL import Image
from io import BytesIO
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import img_to_array
from sklearn.metrics.pairwise import cosine_similarity
BASE_DIR = "saved_data"
app = FastAPI()
mobilenet = MobileNetV2(weights="imagenet", include_top=False, pooling='avg')
def orb_sim(img1, img2):
# ORB
orb = cv2.ORB_create()
kp_a, desc_a = orb.detectAndCompute(img1, None)
kp_b, desc_b = orb.detectAndCompute(img2, None)
# Brute-force matcher
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(desc_a, desc_b)
similar_regions = [i for i in matches if i.distance < 20]
if len(matches) == 0:
return 0
return len(similar_regions) / len(matches)
def preprocess_image_for_mobilenet(image):
# Garantir que a imagem tem 3 canais
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Redimensionar e preparar imagem
image = cv2.resize(image, (224, 224))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = preprocess_input(image)
return image
def mobilenet_similarity(img1, img2):
try:
img1_proc = preprocess_image_for_mobilenet(img1)
img2_proc = preprocess_image_for_mobilenet(img2)
feat1 = mobilenet.predict(img1_proc, verbose=0)
feat2 = mobilenet.predict(img2_proc, verbose=0)
sim = cosine_similarity(feat1, feat2)[0][0] # Valor entre -1 e 1
sim_score = (sim + 1) * 50 # Escalar para 0-100
print(f"MobileNet similarity score is {sim_score}")
return float(sim_score)
except Exception as e:
print("Erro ao calcular similaridade com MobileNet")
return 0
def load_image(source):
Image.MAX_IMAGE_PIXELS = None
def extract_frame_from_video(video_path_or_url, time_sec):
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_frame:
frame_path = temp_frame.name
command = [
ffmpeg_path,
"-ss", str(time_sec),
"-i", video_path_or_url,
"-frames:v", "1",
"-q:v", "2",
"-y",
frame_path
]
subprocess.run(command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not os.path.exists(frame_path):
raise ValueError("Failed to extract frame from video.")
frame = cv2.imread(frame_path, cv2.IMREAD_GRAYSCALE)
os.remove(frame_path)
return frame
if source.startswith('http'):
mime_type, _ = mimetypes.guess_type(source)
if mime_type and mime_type.startswith('video'):
return extract_frame_from_video(source, frame_time)
# Assume imagem
response = requests.get(source)
img = np.asarray(bytearray(response.content), dtype=np.uint8)
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE)
return img
else:
try:
img_bytes = base64.b64decode(source)
mime_type = mimetypes.guess_type("data")[0] # fallback
# Tenta abrir como imagem
img = Image.open(BytesIO(img_bytes))
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
except Exception:
# Se falhar, assumimos que é vídeo em base64 e extraímos frame
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
temp_video.write(base64.b64decode(source))
temp_video_path = temp_video.name
frame = extract_frame_from_video(temp_video_path, frame_time)
os.remove(temp_video_path)
return frame
app = FastAPI()
BASE_DIR = "/tmp/data"
@app.post("/save")
async def save(image_data: RequestModel):
os.makedirs(BASE_DIR, exist_ok=True)
filename = os.path.join(BASE_DIR, f"{image_data.originId}_{image_data.assetCode}.json")
img1 = load_image(image_data.originSource)
img2 = load_image(image_data.source)
similarity_orb = None
similarity_mobilenet = None
if img1 is not None and img2 is not None:
similarity_orb = orb_sim(img1, img2)
print(f"Similaridade ORB entre {image_data.originSource} e {image_data.source}: {similarity_orb}")
similarity_mobilenet = mobilenet_similarity(img1, img2)
print(f"Similaridade Mobilenet entre {image_data.originSource} e {image_data.source}: {similarity_mobilenet}")
data_to_save = image_data.dict()
if similarity_orb is not None:
data_to_save["similarityOrb"] = similarity_orb
data_to_save["similarityMobilenet"] = similarity_mobilenet
with open(filename, "w") as f:
json.dump(data_to_save, f, indent=4)
return True
@app.get("/files")
async def list_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read() # Lê o conteúdo do ficheiro
# Tenta decodificar o conteúdo como JSON, se possível
try:
file_content_json = json.loads(file_content)
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
files_data.append({"filename": filename, "content": file_content}) # Se não for JSON, retorna o texto
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/similar")
async def list_similar_files():
try:
files_data = []
for filename in os.listdir(BASE_DIR):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
# Check for similarityOrb and filter
if "similarityOrb" in file_content_json and file_content_json["similarityOrb"] > 0:
files_data.append({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
pass # Skip files that are not valid JSON
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
return JSONResponse({"files_data": files_data})
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")
@app.get("/files/find/{origin_id}")
async def get_file_by_origin_id(origin_id: int):
try:
for filename in os.listdir(BASE_DIR):
if filename.startswith(f"{origin_id}_") and filename.endswith(".json"):
filepath = os.path.join(BASE_DIR, filename)
if os.path.isfile(filepath):
try:
with open(filepath, "r") as f:
file_content = f.read()
try:
file_content_json = json.loads(file_content)
return JSONResponse({"filename": filename, "content": file_content_json})
except json.JSONDecodeError:
return JSONResponse({"filename": filename, "content": file_content})
except (IOError, OSError) as e:
raise HTTPException(status_code=500, detail=f"Erro ao ler o ficheiro {filename}: {e}")
raise HTTPException(status_code=404, detail=f"Ficheiro com originId '{origin_id}' não encontrado")
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Diretório de dados não encontrado")