Spaces:
Sleeping
Sleeping
title: RAGTesting | |
emoji: π¬ | |
colorFrom: yellow | |
colorTo: purple | |
sdk: gradio | |
sdk_version: 5.0.1 | |
app_file: app.py | |
pinned: false | |
license: mit | |
short_description: A simple RAG demo | |
# Mini RAG Demo β Retrieval-Augmented Generation on Wikipedia | |
This is a lightweight Retrieval-Augmented Generation (RAG) app built with Gradio. It combines semantic search over a mini Wikipedia (`rag-datasets/rag-mini-wikipedia`) corpus with reranking and language generation to answer natural language questions using real documents. | |
--- | |
## What It Does | |
- Embeds a query using a SentenceTransformer (`all-MiniLM-L6-v2`) | |
- Retrieves the top-5 most semantically similar Wikipedia passages using FAISS | |
- Reranks them using a CrossEncoder model (`cross-encoder/ms-marco-MiniLM-L-6-v2`) | |
- Generates an answer using a Hugging Face language model | |
--- | |
## Tech Stack | |
- **Gradio** β Web interface | |
- **FAISS** β Fast dense vector retrieval | |
- **Sentence-Transformers** β Embedding & reranking | |
- **Transformers (Hugging Face)** β Language model for generation | |
- **Hugging Face Datasets** β Mini Wikipedia corpus (`rag-datasets/rag-mini-wikipedia`) | |
--- | |
## Models Used | |
| Purpose | Model | | |
|---------------|---------------------------------------------| | |
| Embedding | `all-MiniLM-L6-v2` | | |
| Reranking | `cross-encoder/ms-marco-MiniLM-L-6-v2` | | |
| Generation | `mistralai/Mistral-7B-Instruct-v0.2` *(optional)* or a smaller model | | |
--- | |
## π¦ Running Locally | |
To run the app locally: | |
```bash | |
git clone https://huggingface.co/spaces/YOUR_USERNAME/mini-rag-demo | |
cd mini-rag-demo | |
pip install -r requirements.txt | |
python app.py | |
``` | |