correct JSON and filtering
Browse files
input_output/wjec-gce-as-a-economics-specification-from-2015.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef6fa3102f82c9a3e0eb99a8c7a08f86df01c2ba7636ff4bef8cbd7f780e7b6
|
3 |
+
size 3543551
|
pearson_json/_subtopics.json
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"title": "Content",
|
4 |
+
"contents": [
|
5 |
+
{
|
6 |
+
"type": "image",
|
7 |
+
"key": "/topic-extraction/cells/img_1.jpg_r0_c0.png"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"type": "image",
|
11 |
+
"key": "/topic-extraction/cells/img_3.jpg_r0_c0.png"
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"type": "image",
|
15 |
+
"key": "/topic-extraction/cells/img_4.jpg_r1_c0.png"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"type": "image",
|
19 |
+
"key": "/topic-extraction/cells/img_5.jpg_r0_c0.png"
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"type": "image",
|
23 |
+
"key": "/topic-extraction/cells/img_6.jpg_r0_c0.png"
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"type": "image",
|
27 |
+
"key": "/topic-extraction/cells/img_9.jpg_r0_c0.png"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"type": "image",
|
31 |
+
"key": "/topic-extraction/cells/img_15.jpg_r0_c0.png"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"type": "image",
|
35 |
+
"key": "/topic-extraction/cells/img_16.jpg_r0_c0.png"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"type": "image",
|
39 |
+
"key": "/topic-extraction/cells/img_18.jpg_r0_c0.png"
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"type": "image",
|
43 |
+
"key": "/topic-extraction/cells/img_19.jpg_r0_c0.png"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"type": "image",
|
47 |
+
"key": "/topic-extraction/cells/img_20.jpg_r0_c0.png"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"type": "image",
|
51 |
+
"key": "/topic-extraction/cells/img_22.jpg_r0_c0.png"
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"type": "image",
|
55 |
+
"key": "/topic-extraction/cells/img_23.jpg_r0_c0.png"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"type": "image",
|
59 |
+
"key": "/topic-extraction/cells/img_27.jpg_r0_c0.png"
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"type": "image",
|
63 |
+
"key": "/topic-extraction/cells/img_28.jpg_r0_c0.png"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"type": "image",
|
67 |
+
"key": "/topic-extraction/cells/img_29.jpg_r0_c0.png"
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"children": []
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"title": "Factors influencing demand and supply in product markets",
|
74 |
+
"contents": [
|
75 |
+
{
|
76 |
+
"type": "image",
|
77 |
+
"key": "/topic-extraction/cells/img_2.jpg_r1_c0.png"
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"children": []
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"title": "Why and how governments intervene in markets",
|
84 |
+
"contents": [
|
85 |
+
{
|
86 |
+
"type": "image",
|
87 |
+
"key": "/topic-extraction/cells/img_7.jpg_r1_c0.png"
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"children": []
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"title": "The circular flow of income model",
|
94 |
+
"contents": [
|
95 |
+
{
|
96 |
+
"type": "image",
|
97 |
+
"key": "/topic-extraction/cells/img_8.jpg_r2_c0.png"
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"children": []
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"title": "Government policy objectives",
|
104 |
+
"contents": [
|
105 |
+
{
|
106 |
+
"type": "image",
|
107 |
+
"key": "/topic-extraction/cells/img_10.jpg_r1_c0.png"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"children": []
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"title": "Fiscal policy",
|
114 |
+
"contents": [
|
115 |
+
{
|
116 |
+
"type": "image",
|
117 |
+
"key": "/topic-extraction/cells/img_11.jpg_r1_c0.png"
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"children": []
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"title": "Monetary policy",
|
124 |
+
"contents": [
|
125 |
+
{
|
126 |
+
"type": "image",
|
127 |
+
"key": "/topic-extraction/cells/img_12.jpg_r1_c0.png"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"children": []
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"title": "Exchange rates and exchange rate policy",
|
134 |
+
"contents": [
|
135 |
+
{
|
136 |
+
"type": "image",
|
137 |
+
"key": "/topic-extraction/cells/img_13.jpg_r1_c0.png"
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"children": []
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"title": "Free trade and protectionism",
|
144 |
+
"contents": [
|
145 |
+
{
|
146 |
+
"type": "image",
|
147 |
+
"key": "/topic-extraction/cells/img_14.jpg_r1_c0.png"
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"children": []
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"title": "Monopoly",
|
154 |
+
"contents": [
|
155 |
+
{
|
156 |
+
"type": "image",
|
157 |
+
"key": "/topic-extraction/cells/img_17.jpg_r2_c0.png"
|
158 |
+
}
|
159 |
+
],
|
160 |
+
"children": []
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"title": "Economic growth",
|
164 |
+
"contents": [
|
165 |
+
{
|
166 |
+
"type": "image",
|
167 |
+
"key": "/topic-extraction/cells/img_21.jpg_r1_c0.png"
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"children": []
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"title": "Inflation and deflation",
|
174 |
+
"contents": [
|
175 |
+
{
|
176 |
+
"type": "image",
|
177 |
+
"key": "/topic-extraction/cells/img_24.jpg_r1_c0.png"
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"children": []
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"title": "The balance of payments",
|
184 |
+
"contents": [
|
185 |
+
{
|
186 |
+
"type": "image",
|
187 |
+
"key": "/topic-extraction/cells/img_25.jpg_r2_c0.png"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"children": []
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"title": "Control of the national (public sector) debt",
|
194 |
+
"contents": [
|
195 |
+
{
|
196 |
+
"type": "image",
|
197 |
+
"key": "/topic-extraction/cells/img_26.jpg_r1_c0.png"
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"children": []
|
201 |
+
}
|
202 |
+
]
|
topic_extr.py
CHANGED
@@ -207,6 +207,13 @@ class s3Writer:
|
|
207 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
208 |
raise
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
|
211 |
arr = np.frombuffer(image_data, np.uint8)
|
212 |
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
@@ -238,11 +245,6 @@ The two-column 'table' image includes such key features:
|
|
238 |
- Two columns
|
239 |
- Headers like 'Subject content', 'Additional information'
|
240 |
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
241 |
-
The empty image include such key features:
|
242 |
-
- Does not include anything at all (like a blank white or black image)
|
243 |
-
- Truncated image with words like 'Subject content', 'What students need to learn' with blue background.
|
244 |
-
- Truncated image with words like 'Topics', 'What students need to learn', 'Content' with grey background ((166, 166, 166) or (180,180,180) RGB color code).
|
245 |
-
If the image is an empty image, respond with 'EMPTY_IMAGE'.
|
246 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
247 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
248 |
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
@@ -309,7 +311,7 @@ Your task is to extract:
|
|
309 |
|
310 |
Follow these rules:
|
311 |
|
312 |
-
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued", then:
|
313 |
- Put that text (without the word "continued") in "title". (e.g. "2 Algebra and functions")
|
314 |
- "subtopics" should be an empty array, unless you also see smaller subtopic numbers.
|
315 |
|
@@ -318,11 +320,11 @@ Follow these rules:
|
|
318 |
- "title" in this case should be an empty string if you only detect subtopics.
|
319 |
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
320 |
|
321 |
-
(3)
|
322 |
-
{
|
323 |
"title": "",
|
324 |
"subtopics": []
|
325 |
-
}
|
326 |
|
327 |
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
328 |
- Use the **left column text** as "title".
|
@@ -344,6 +346,15 @@ Follow these rules:
|
|
344 |
"subtopics": [...]
|
345 |
}
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
**Examples**:
|
348 |
|
349 |
- If the image text is `"2 Algebra and functions continued"`, return:
|
@@ -411,6 +422,8 @@ Follow these rules:
|
|
411 |
|
412 |
title = data.get("title", "")
|
413 |
subtopics = data.get("subtopics", [])
|
|
|
|
|
414 |
if not isinstance(subtopics, list):
|
415 |
subtopics = []
|
416 |
return {"title": title, "subtopics": subtopics}
|
@@ -454,21 +467,27 @@ class S3ImageWriter(DataWriter):
|
|
454 |
for p, info in self.descriptions.items()
|
455 |
}
|
456 |
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
457 |
-
for p, result in zip(
|
458 |
if isinstance(result, Exception):
|
459 |
logger.error(f"Table classification error for {p}: {result}")
|
460 |
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
461 |
else:
|
462 |
self.descriptions[p]['table_classification'] = result
|
463 |
|
464 |
-
|
|
|
465 |
cls = info['table_classification']
|
466 |
if cls == "TWO_COLUMN":
|
467 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
468 |
elif cls == "THREE_COLUMN":
|
469 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
470 |
elif cls == "EMPTY_IMAGE":
|
|
|
471 |
md_content = md_content.replace(f"", "")
|
|
|
|
|
|
|
|
|
472 |
del self.descriptions[p]
|
473 |
continue
|
474 |
else:
|
@@ -477,7 +496,7 @@ class S3ImageWriter(DataWriter):
|
|
477 |
|
478 |
md_content = await self._process_table_images_in_markdown(key, md_content)
|
479 |
|
480 |
-
# Filter final lines to keep only lines with images
|
481 |
final_lines = [
|
482 |
line.strip() for line in md_content.split("\n")
|
483 |
if re.match(r"^\!\[.*\]\(.*\)", line.strip())
|
@@ -558,12 +577,20 @@ class S3ImageWriter(DataWriter):
|
|
558 |
with open(cell_path, "rb") as cf:
|
559 |
cell_image_data = cf.read()
|
560 |
|
561 |
-
# Save cell image to S3.
|
562 |
cell_key = f"{self.base_path}cells/{os.path.basename(s3_key)}_r{i}_c{j}.png"
|
563 |
self.s3_writer.write(cell_key, cell_image_data)
|
564 |
-
|
|
|
565 |
info = call_gemini_for_subtopic_identification_image(cell_image_data, self.gemini_api_key)
|
566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
|
568 |
if info["title"] and not recognized_main_topic:
|
569 |
recognized_main_topic = info["title"]
|
@@ -706,6 +733,15 @@ In that scenario, your output might look like:
|
|
706 |
"2.3 A2 Unit 3": [24, 30],
|
707 |
"2.4 A2 Unit 4": [31, 35]
|
708 |
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
709 |
4. Another example might list subtopics:
|
710 |
3.1 Overarching themes 11
|
711 |
3.2 A: Proof 12
|
@@ -912,7 +948,7 @@ class MineruNoTextProcessor:
|
|
912 |
subtopic_list = list(writer.extracted_subtopics.values())
|
913 |
subtopic_list = merge_topics(subtopic_list)
|
914 |
|
915 |
-
out_path = os.path.join(self.output_folder, "
|
916 |
with open(out_path, "w", encoding="utf-8") as f:
|
917 |
json.dump(subtopic_list, f, indent=2)
|
918 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
@@ -925,7 +961,7 @@ class MineruNoTextProcessor:
|
|
925 |
self.cleanup_gpu()
|
926 |
|
927 |
if __name__ == "__main__":
|
928 |
-
input_pdf = "/home/user/app/input_output/a-
|
929 |
output_dir = "/home/user/app/pearson_json"
|
930 |
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
931 |
try:
|
|
|
207 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
208 |
raise
|
209 |
|
210 |
+
def delete(self, path: str) -> None:
|
211 |
+
try:
|
212 |
+
self.client.delete_object(Bucket=self.bucket, Key=path)
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"Failed to delete from S3: {str(e)}")
|
215 |
+
raise
|
216 |
+
|
217 |
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
|
218 |
arr = np.frombuffer(image_data, np.uint8)
|
219 |
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
|
|
245 |
- Two columns
|
246 |
- Headers like 'Subject content', 'Additional information'
|
247 |
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
|
|
|
|
|
|
|
|
|
|
248 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
249 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
250 |
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
|
|
311 |
|
312 |
Follow these rules:
|
313 |
|
314 |
+
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued", (remove the word "continued") then:
|
315 |
- Put that text (without the word "continued") in "title". (e.g. "2 Algebra and functions")
|
316 |
- "subtopics" should be an empty array, unless you also see smaller subtopic numbers.
|
317 |
|
|
|
320 |
- "title" in this case should be an empty string if you only detect subtopics.
|
321 |
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
322 |
|
323 |
+
(3) If no main topic or subtopic is detected but the text appears to be a heading (e.g. "Scarcity, choice and opportunity cost"), return:
|
324 |
+
{{
|
325 |
"title": "",
|
326 |
"subtopics": []
|
327 |
+
}}
|
328 |
|
329 |
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
330 |
- Use the **left column text** as "title".
|
|
|
346 |
"subtopics": [...]
|
347 |
}
|
348 |
|
349 |
+
(7) If the image is blank or truncated, defined as:
|
350 |
+
- Contains no words at all (e.g. a blank white or black image)
|
351 |
+
- Contains only a truncated snippet of words such as "Topics", "What students need to learn" with blue background
|
352 |
+
- Contains a truncated snippet with words like "Topics", "What students need to learn", "Content" with gray background (RGB (166,166,166) or (180,180,180)) then return:
|
353 |
+
{{
|
354 |
+
"title": "EMPTY_IMAGE",
|
355 |
+
"subtopics": []
|
356 |
+
}}
|
357 |
+
|
358 |
**Examples**:
|
359 |
|
360 |
- If the image text is `"2 Algebra and functions continued"`, return:
|
|
|
422 |
|
423 |
title = data.get("title", "")
|
424 |
subtopics = data.get("subtopics", [])
|
425 |
+
if title.upper() == "EMPTY_IMAGE":
|
426 |
+
return {"title": "EMPTY_IMAGE", "subtopics": []}
|
427 |
if not isinstance(subtopics, list):
|
428 |
subtopics = []
|
429 |
return {"title": title, "subtopics": subtopics}
|
|
|
467 |
for p, info in self.descriptions.items()
|
468 |
}
|
469 |
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
470 |
+
for p, result in zip(list(self.descriptions.keys()), results):
|
471 |
if isinstance(result, Exception):
|
472 |
logger.error(f"Table classification error for {p}: {result}")
|
473 |
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
474 |
else:
|
475 |
self.descriptions[p]['table_classification'] = result
|
476 |
|
477 |
+
# Process each image description.
|
478 |
+
for p, info in list(self.descriptions.items()):
|
479 |
cls = info['table_classification']
|
480 |
if cls == "TWO_COLUMN":
|
481 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
482 |
elif cls == "THREE_COLUMN":
|
483 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
484 |
elif cls == "EMPTY_IMAGE":
|
485 |
+
# Remove markdown reference, delete from descriptions and S3.
|
486 |
md_content = md_content.replace(f"", "")
|
487 |
+
try:
|
488 |
+
self.s3_writer.delete(info['s3_path'])
|
489 |
+
except Exception as e:
|
490 |
+
logger.error(f"Error deleting S3 object {info['s3_path']}: {e}")
|
491 |
del self.descriptions[p]
|
492 |
continue
|
493 |
else:
|
|
|
496 |
|
497 |
md_content = await self._process_table_images_in_markdown(key, md_content)
|
498 |
|
499 |
+
# Filter final lines to keep only lines with images.
|
500 |
final_lines = [
|
501 |
line.strip() for line in md_content.split("\n")
|
502 |
if re.match(r"^\!\[.*\]\(.*\)", line.strip())
|
|
|
577 |
with open(cell_path, "rb") as cf:
|
578 |
cell_image_data = cf.read()
|
579 |
|
|
|
580 |
cell_key = f"{self.base_path}cells/{os.path.basename(s3_key)}_r{i}_c{j}.png"
|
581 |
self.s3_writer.write(cell_key, cell_image_data)
|
582 |
+
|
583 |
+
#extract subtopic info from the cell image.
|
584 |
info = call_gemini_for_subtopic_identification_image(cell_image_data, self.gemini_api_key)
|
585 |
+
|
586 |
+
# Check if the image is empty.
|
587 |
+
if info.get("title", "").upper() == "EMPTY_IMAGE":
|
588 |
+
try:
|
589 |
+
self.s3_writer.delete(cell_key)
|
590 |
+
logger.info(f"Deleted empty cell image from S3: {cell_key}")
|
591 |
+
except Exception as e:
|
592 |
+
logger.error(f"Error deleting empty cell image {cell_key}: {e}")
|
593 |
+
continue # Skip processing this cell further
|
594 |
|
595 |
if info["title"] and not recognized_main_topic:
|
596 |
recognized_main_topic = info["title"]
|
|
|
733 |
"2.3 A2 Unit 3": [24, 30],
|
734 |
"2.4 A2 Unit 4": [31, 35]
|
735 |
}}
|
736 |
+
or
|
737 |
+
2.1 AS units 6
|
738 |
+
2.2 AS units 23
|
739 |
+
In that scenario, your output might look like:
|
740 |
+
{{
|
741 |
+
"2.1 AS Unit 1": [6, 2],
|
742 |
+
"2.2 AS Unit 2": [23, 43]
|
743 |
+
}}
|
744 |
+
|
745 |
4. Another example might list subtopics:
|
746 |
3.1 Overarching themes 11
|
747 |
3.2 A: Proof 12
|
|
|
948 |
subtopic_list = list(writer.extracted_subtopics.values())
|
949 |
subtopic_list = merge_topics(subtopic_list)
|
950 |
|
951 |
+
out_path = os.path.join(self.output_folder, "_subtopics.json")
|
952 |
with open(out_path, "w", encoding="utf-8") as f:
|
953 |
json.dump(subtopic_list, f, indent=2)
|
954 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
|
|
961 |
self.cleanup_gpu()
|
962 |
|
963 |
if __name__ == "__main__":
|
964 |
+
input_pdf = "/home/user/app/input_output/wjec-gce-as-a-economics-specification-from-2015.pdf"
|
965 |
output_dir = "/home/user/app/pearson_json"
|
966 |
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
967 |
try:
|
topic_extraction.log
CHANGED
The diff for this file is too large to render.
See raw diff
|
|