Files changed (1) hide show
  1. app.py +152 -22
app.py CHANGED
@@ -8,6 +8,127 @@ from PIL import Image
8
  from diffusers import QwenImageEditPipeline
9
 
10
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  # --- Model Loading ---
13
  dtype = torch.bfloat16
@@ -20,22 +141,23 @@ pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype
20
  MAX_SEED = np.iinfo(np.int32).max
21
 
22
  # --- Main Inference Function (with hardcoded negative prompt) ---
23
- @spaces.GPU(duration=120)
24
  def infer(
25
  image,
26
  prompt,
27
  seed=42,
28
  randomize_seed=False,
29
- guidance_scale=4.0,
30
  true_guidance_scale=1.0,
31
  num_inference_steps=50,
 
 
32
  progress=gr.Progress(track_tqdm=True),
33
  ):
34
  """
35
  Generates an image using the local Qwen-Image diffusers pipeline.
36
  """
37
  # Hardcode the negative prompt as requested
38
- negative_prompt = "text, watermark, copyright, blurry, low resolution"
39
 
40
  if randomize_seed:
41
  seed = random.randint(0, MAX_SEED)
@@ -45,7 +167,10 @@ def infer(
45
 
46
  print(f"Calling pipeline with prompt: '{prompt}'")
47
  print(f"Negative Prompt: '{negative_prompt}'")
48
- print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
 
 
 
49
 
50
  # Generate the image
51
  image = pipe(
@@ -55,8 +180,8 @@ def infer(
55
  num_inference_steps=num_inference_steps,
56
  generator=generator,
57
  true_cfg_scale=true_guidance_scale,
58
- guidance_scale=guidance_scale
59
- ).images[0]
60
 
61
  return image, seed
62
 
@@ -73,21 +198,22 @@ css = """
73
 
74
  with gr.Blocks(css=css) as demo:
75
  with gr.Column(elem_id="col-container"):
76
- gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
77
- gr.HTML('<h1 style="text-align: center;margin-left: 80px;color: #5b47d1;font-style: italic;">Edit</h1>', elem_id="edit_text")
78
  gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
79
  with gr.Row():
80
  with gr.Column():
81
  input_image = gr.Image(label="Input Image", show_label=False, type="pil")
82
- prompt = gr.Text(
 
 
 
 
83
  label="Prompt",
84
  show_label=False,
85
  placeholder="describe the edit instruction",
86
  container=False,
87
- )
88
- run_button = gr.Button("Edit!", variant="primary")
89
-
90
- result = gr.Image(label="Result", show_label=False, type="pil")
91
 
92
  with gr.Accordion("Advanced Settings", open=False):
93
  # Negative prompt UI element is removed here
@@ -103,20 +229,13 @@ with gr.Blocks(css=css) as demo:
103
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
104
 
105
  with gr.Row():
106
- guidance_scale = gr.Slider(
107
- label="Distilled guidance scale",
108
- minimum=0.0,
109
- maximum=10.0,
110
- step=0.1,
111
- value=4.0,
112
- )
113
 
114
  true_guidance_scale = gr.Slider(
115
  label="True guidance scale",
116
  minimum=1.0,
117
  maximum=10.0,
118
  step=0.1,
119
- value=1.0
120
  )
121
 
122
  num_inference_steps = gr.Slider(
@@ -126,6 +245,16 @@ with gr.Blocks(css=css) as demo:
126
  step=1,
127
  value=50,
128
  )
 
 
 
 
 
 
 
 
 
 
129
 
130
  # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
131
 
@@ -137,9 +266,10 @@ with gr.Blocks(css=css) as demo:
137
  prompt,
138
  seed,
139
  randomize_seed,
140
- guidance_scale,
141
  true_guidance_scale,
142
  num_inference_steps,
 
 
143
  ],
144
  outputs=[result, seed],
145
  )
 
8
  from diffusers import QwenImageEditPipeline
9
 
10
  import os
11
+ import base64
12
+ import json
13
+
14
+ SYSTEM_PROMPT = '''
15
+ # Edit Instruction Rewriter
16
+ You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
17
+
18
+ Please strictly follow the rewriting rules below:
19
+
20
+ ## 1. General Principles
21
+ - Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
22
+ - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
23
+ - Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
24
+ - All added objects or modifications must align with the logic and style of the edited input image’s overall scene.
25
+
26
+ ## 2. Task Type Handling Rules
27
+ ### 1. Add, Delete, Replace Tasks
28
+ - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
29
+ - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
30
+ > Original: "Add an animal"
31
+ > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
32
+ - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
33
+ - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
34
+
35
+ ### 2. Text Editing Tasks
36
+ - All text content must be enclosed in English double quotes `" "`. Do not translate or alter the original language of the text.
37
+ - **For text replacement tasks, always use the fixed template:** `Replace "xx" to "yy"`. Do not improvise beyond this format.
38
+ - If the user does not specify text content, infer and add concise text based on the instruction and the input image’s context. For example:
39
+ > Original: "Add a line of text" (poster)
40
+ > Rewritten: "Add text \"LIMITED EDITION\" at the top center, bold white font with slight shadow"
41
+ - Specify text position, font style (can be inferred), color, and layout in a concise way.
42
+
43
+ ### 3. Human Editing Tasks
44
+ - Maintain the person’s core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
45
+ - If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
46
+ - **For expression changes, they must be natural and subtle, never exaggerated.**
47
+ - Example:
48
+ > Original: "Change the person’s hat"
49
+ > Rewritten: "Replace the man’s hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
50
+
51
+ ### 4. Style Transformation or Enhancement Tasks
52
+ - If a style is specified, describe it concisely with key visual traits. For example:
53
+ > Original: "Disco style"
54
+ > Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
55
+ - If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
56
+ - **For coloring tasks, do not preserve the original tones.** Example:
57
+ > "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
58
+
59
+ ## 3. Rationality and Logic Checks
60
+ - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
61
+ - Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
62
+
63
+ # Output Format Example
64
+ ```json
65
+ {
66
+ "Rewritten": "..."
67
+ }
68
+ '''
69
+
70
+ def polish_prompt(prompt, img):
71
+ prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
72
+ success=False
73
+ while not success:
74
+ try:
75
+ result = api(prompt, [img])
76
+ # print(f"Result: {result}")
77
+ # print(f"Polished Prompt: {polished_prompt}")
78
+ if isinstance(result, str):
79
+ result = result.replace('```json','')
80
+ result = result.replace('```','')
81
+ result = json.loads(result)
82
+ else:
83
+ result = json.loads(result)
84
+
85
+ polished_prompt = result['Rewritten']
86
+ polished_prompt = polished_prompt.strip()
87
+ polished_prompt = polished_prompt.replace("\n", " ")
88
+ success = True
89
+ except Exception as e:
90
+ print(f"[Warning] Error during API call: {e}")
91
+ return polished_prompt
92
+
93
+
94
+ def encode_image(pil_image):
95
+ import io
96
+ buffered = io.BytesIO()
97
+ pil_image.save(buffered, format="PNG")
98
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
99
+
100
+
101
+
102
+
103
+ def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}):
104
+ import dashscope
105
+ api_key = os.environ.get('DASH_API_KEY')
106
+ if not api_key:
107
+ raise EnvironmentError("DASH_API_KEY is not set")
108
+ assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}"
109
+ sys_promot = "you are a helpful assistant, you should provide useful answers to users."
110
+ messages = [
111
+ {"role": "system", "content": sys_promot},
112
+ {"role": "user", "content": []}]
113
+ for img in img_list:
114
+ messages[1]["content"].append(
115
+ {"image": f"data:image/png;base64,{encode_image(img)}"})
116
+ messages[1]["content"].append({"text": f"{prompt}"})
117
+
118
+ response_format = kwargs.get('response_format', None)
119
+
120
+ response = dashscope.MultiModalConversation.call(
121
+ api_key=api_key,
122
+ model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models
123
+ messages=messages,
124
+ result_format='message',
125
+ response_format=response_format,
126
+ )
127
+
128
+ if response.status_code == 200:
129
+ return response.output.choices[0].message.content[0]['text']
130
+ else:
131
+ raise Exception(f'Failed to post: {response}')
132
 
133
  # --- Model Loading ---
134
  dtype = torch.bfloat16
 
141
  MAX_SEED = np.iinfo(np.int32).max
142
 
143
  # --- Main Inference Function (with hardcoded negative prompt) ---
144
+ @spaces.GPU(duration=300)
145
  def infer(
146
  image,
147
  prompt,
148
  seed=42,
149
  randomize_seed=False,
 
150
  true_guidance_scale=1.0,
151
  num_inference_steps=50,
152
+ rewrite_prompt=True,
153
+ num_images_per_prompt=1,
154
  progress=gr.Progress(track_tqdm=True),
155
  ):
156
  """
157
  Generates an image using the local Qwen-Image diffusers pipeline.
158
  """
159
  # Hardcode the negative prompt as requested
160
+ negative_prompt = " "
161
 
162
  if randomize_seed:
163
  seed = random.randint(0, MAX_SEED)
 
167
 
168
  print(f"Calling pipeline with prompt: '{prompt}'")
169
  print(f"Negative Prompt: '{negative_prompt}'")
170
+ print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
171
+ if rewrite_prompt:
172
+ prompt = polish_prompt(prompt, image)
173
+ print(f"Rewritten Prompt: {prompt}")
174
 
175
  # Generate the image
176
  image = pipe(
 
180
  num_inference_steps=num_inference_steps,
181
  generator=generator,
182
  true_cfg_scale=true_guidance_scale,
183
+ num_images_per_prompt=num_images_per_prompt
184
+ ).images
185
 
186
  return image, seed
187
 
 
198
 
199
  with gr.Blocks(css=css) as demo:
200
  with gr.Column(elem_id="col-container"):
201
+ gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
 
202
  gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
203
  with gr.Row():
204
  with gr.Column():
205
  input_image = gr.Image(label="Input Image", show_label=False, type="pil")
206
+
207
+ # result = gr.Image(label="Result", show_label=False, type="pil")
208
+ result = gr.Gallery(label="Result", show_label=False, type="pil")
209
+ with gr.Row():
210
+ prompt = gr.Text(
211
  label="Prompt",
212
  show_label=False,
213
  placeholder="describe the edit instruction",
214
  container=False,
215
+ )
216
+ run_button = gr.Button("Edit!", variant="primary")
 
 
217
 
218
  with gr.Accordion("Advanced Settings", open=False):
219
  # Negative prompt UI element is removed here
 
229
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
230
 
231
  with gr.Row():
 
 
 
 
 
 
 
232
 
233
  true_guidance_scale = gr.Slider(
234
  label="True guidance scale",
235
  minimum=1.0,
236
  maximum=10.0,
237
  step=0.1,
238
+ value=4.0
239
  )
240
 
241
  num_inference_steps = gr.Slider(
 
245
  step=1,
246
  value=50,
247
  )
248
+
249
+ num_images_per_prompt = gr.Slider(
250
+ label="Number of images per prompt",
251
+ minimum=1,
252
+ maximum=4,
253
+ step=1,
254
+ value=1,
255
+ )
256
+
257
+ rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=True)
258
 
259
  # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
260
 
 
266
  prompt,
267
  seed,
268
  randomize_seed,
 
269
  true_guidance_scale,
270
  num_inference_steps,
271
+ rewrite_prompt,
272
+ num_images_per_prompt,
273
  ],
274
  outputs=[result, seed],
275
  )