Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from fastai.text.all import *
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
@@ -15,7 +15,7 @@ def classify_medical_text(txt):
|
|
15 |
return dict(zip(medical_categories, map(float, probs)))
|
16 |
|
17 |
# Load the psychiatric model from Hugging Face
|
18 |
-
psychiatric_model_name = "
|
19 |
psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name)
|
20 |
psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name)
|
21 |
|
@@ -31,6 +31,27 @@ def classify_psychiatric_text(txt):
|
|
31 |
probabilities = torch.softmax(logits, dim=1).squeeze().tolist()
|
32 |
return dict(zip(psychiatric_labels, probabilities))
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Gradio Interfaces
|
35 |
medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail')
|
36 |
medical_label = gr.Label()
|
@@ -40,6 +61,17 @@ psychiatric_text = gr.Textbox(lines=2, label='Describe your mental health concer
|
|
40 |
psychiatric_label = gr.Label()
|
41 |
psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.']
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
medical_interface = gr.Interface(
|
44 |
fn=classify_medical_text,
|
45 |
inputs=medical_text,
|
@@ -56,6 +88,16 @@ psychiatric_interface = gr.Interface(
|
|
56 |
description=psychiatric_description,
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Combine interfaces using Tabs
|
60 |
-
app = gr.TabbedInterface(
|
|
|
|
|
|
|
|
|
61 |
app.launch(inline=False)
|
|
|
1 |
from fastai.text.all import *
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
|
|
15 |
return dict(zip(medical_categories, map(float, probs)))
|
16 |
|
17 |
# Load the psychiatric model from Hugging Face
|
18 |
+
psychiatric_model_name = "mental/mental-bert-base-uncased" # Replace with the appropriate model
|
19 |
psychiatric_tokenizer = AutoTokenizer.from_pretrained(psychiatric_model_name)
|
20 |
psychiatric_model = AutoModelForSequenceClassification.from_pretrained(psychiatric_model_name)
|
21 |
|
|
|
31 |
probabilities = torch.softmax(logits, dim=1).squeeze().tolist()
|
32 |
return dict(zip(psychiatric_labels, probabilities))
|
33 |
|
34 |
+
# Load pre-trained conversational model for Lifestyle and Nutrition Chatbot
|
35 |
+
lifestyle_model_name = "microsoft/DialoGPT-medium" # Replace with a fine-tuned model if available
|
36 |
+
lifestyle_tokenizer = AutoTokenizer.from_pretrained(lifestyle_model_name)
|
37 |
+
lifestyle_model = AutoModelForCausalLM.from_pretrained(lifestyle_model_name)
|
38 |
+
|
39 |
+
# Chat function for Lifestyle and Nutrition
|
40 |
+
chat_history = []
|
41 |
+
|
42 |
+
def chatbot_response(user_input):
|
43 |
+
global chat_history
|
44 |
+
new_input_ids = lifestyle_tokenizer.encode(user_input + lifestyle_tokenizer.eos_token, return_tensors='pt')
|
45 |
+
bot_input_ids = torch.cat([chat_history, new_input_ids], dim=-1) if chat_history else new_input_ids
|
46 |
+
chat_history = lifestyle_model.generate(bot_input_ids, max_length=1000, pad_token_id=lifestyle_tokenizer.eos_token_id)
|
47 |
+
response = lifestyle_tokenizer.decode(chat_history[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
48 |
+
return response
|
49 |
+
|
50 |
+
def clear_chat():
|
51 |
+
global chat_history
|
52 |
+
chat_history = []
|
53 |
+
return []
|
54 |
+
|
55 |
# Gradio Interfaces
|
56 |
medical_text = gr.Textbox(lines=2, label='Describe your symptoms in detail')
|
57 |
medical_label = gr.Label()
|
|
|
61 |
psychiatric_label = gr.Label()
|
62 |
psychiatric_examples = ['I feel hopeless and have no energy.', 'I am unable to concentrate and feel anxious all the time.', 'I have recurring intrusive thoughts.']
|
63 |
|
64 |
+
lifestyle_chatbot = gr.Chatbot(label="Chat with me about your health and nutrition!")
|
65 |
+
lifestyle_msg = gr.Textbox(placeholder="Ask your question here...", label="Your Question")
|
66 |
+
lifestyle_clear = gr.Button("Clear Chat")
|
67 |
+
|
68 |
+
def user_message(input_text):
|
69 |
+
if not input_text.strip():
|
70 |
+
return lifestyle_chatbot, "Please enter a question."
|
71 |
+
response = chatbot_response(input_text)
|
72 |
+
lifestyle_chatbot.append((input_text, response))
|
73 |
+
return lifestyle_chatbot, ""
|
74 |
+
|
75 |
medical_interface = gr.Interface(
|
76 |
fn=classify_medical_text,
|
77 |
inputs=medical_text,
|
|
|
88 |
description=psychiatric_description,
|
89 |
)
|
90 |
|
91 |
+
with gr.Blocks() as lifestyle_interface:
|
92 |
+
gr.Markdown("## Lifestyle and Nutrition Chatbot")
|
93 |
+
gr.Markdown("Ask me anything about fitness, nutrition, or wellness!")
|
94 |
+
lifestyle_msg.submit(user_message, inputs=[lifestyle_msg], outputs=[lifestyle_chatbot, lifestyle_msg])
|
95 |
+
lifestyle_clear.click(clear_chat, outputs=[lifestyle_chatbot])
|
96 |
+
|
97 |
# Combine interfaces using Tabs
|
98 |
+
app = gr.TabbedInterface(
|
99 |
+
[medical_interface, psychiatric_interface, lifestyle_interface],
|
100 |
+
["Medical Diagnosis", "Psychiatric Analysis", "Lifestyle & Nutrition Chat"]
|
101 |
+
)
|
102 |
+
|
103 |
app.launch(inline=False)
|