thinh-researcher's picture
Init
6e9c433
import math
import re
from collections import OrderedDict
from functools import partial
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torchvision.ops import MLP
from einops import rearrange, repeat
from torch import Tensor, nn
from definition import PRETRAINED_BACKBONE
from ..configs.base_config import base_cfg
from ..utils import count_parameters
from .components import (
build_2d_sincos_posemb,
drop_path,
pair,
trunc_normal_,
)
class PatchedInputAdapter(nn.Module):
"""Adapter for spatial inputs, like images or feature maps.
Creates tokens from patches over the image.
:param num_channels: Number of input channels of the image/feature map
:param stride_level: Stride level compared to the full-sized image.
E.g. 4 for 1/4th the size of the image.
:param patch_size_full: Int or tuple of the patch size over the full image size.
Patch size for smaller inputs will be computed accordingly.
:param dim_tokens: Dimension of output tokens. Can be set using init method.
:param sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
:param learnable_pos_emb: Set to True to learn positional embeddings instead
:param image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(
self,
num_channels: int,
stride_level: int,
patch_size_full: Union[int, Tuple[int, int]],
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
image_size: Union[int, Tuple[int]] = 224,
):
super().__init__()
self.num_channels = num_channels
self.stride_level = stride_level
self.patch_size_full = pair(patch_size_full)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.learnable_pos_emb = learnable_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size_full) * (
self.image_size[1] // patch_size_full
)
# Actual patch height and width, taking into account stride of input
self.P_H = max(1, self.patch_size_full[0] // stride_level)
self.P_W = max(1, self.patch_size_full[1] // stride_level)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768):
"""
Initialize parts of encoder that are dependent on dimension of tokens.
Should be called when setting up MultiMAE.
:param dim_tokens: Dimension of tokens
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // (self.stride_level * self.P_H)
w_posemb = self.image_size[1] // (self.stride_level * self.P_W)
if self.sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(
h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens
)
self.pos_emb = nn.Parameter(
self.pos_emb, requires_grad=self.learnable_pos_emb
)
else:
self.pos_emb = nn.Parameter(
torch.zeros(1, self.dim_tokens, h_posemb, w_posemb)
)
trunc_normal_(self.pos_emb, std=0.02)
# Image -> tokens projection
self.proj = nn.Conv2d(
in_channels=self.num_channels,
out_channels=self.dim_tokens,
kernel_size=(self.P_H, self.P_W),
stride=(self.P_H, self.P_W),
)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_emb"}
def forward(self, x: Tensor) -> Tensor:
"""
Forward pass through input adapter, transforming image to sequence of tokens.
Adds task and positional encodings.
:param x: Input image tensor
"""
B, C, H, W = x.shape
assert (
self.dim_tokens is not None
), "Need to call init(dim_tokens) function first"
assert (H % self.P_H == 0) and (
W % self.P_W == 0
), f"Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}"
N_H, N_W = H // self.P_H, W // self.P_W # Number of patches in height and width
# Create patches [B, C, H, W] -> [B, (H*W), C]
projected_x = self.proj(x)
x_patch = rearrange(projected_x, "b d nh nw -> b (nh nw) d")
# Create positional embedding
x_pos_emb = F.interpolate(
self.pos_emb, size=(N_H, N_W), mode="bicubic", align_corners=False
)
x_pos_emb = rearrange(x_pos_emb, "b d nh nw -> b (nh nw) d")
# Add patches and positional embeddings
x = x_patch + x_pos_emb
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x: Tensor) -> Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path: Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 0 (disabled for isotropic ConvNeXt).
Code from: https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=0.0):
super().__init__()
self.dwconv = nn.Conv2d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, 4 * dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: Tensor) -> Tensor:
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtAdapter(nn.Module):
"""Output adapter with ConvNext blocks for semantic segmentation
:param num_classes: Number of classes
:param num_heads: Number of attention heads
:param embed_dim: Token dimension after projection, and before reshaping operation.
:param preds_per_patch: Increases size of feature map by reshaping each patch Each patch gets reshaped
from embed_dim x 1 x 1 to (embed_dim / preds_per_patch) x (preds_per_patch ** 0.5) x (preds_per_patch ** 0.5)
:param main_tasks: Tasks to use for the adapter. Only tokens coming from these tasks are kept.
:param patch_size: Size of patches
:param depth: Number of ConvNeXt blocks
:interpolate_mode: Interpolation mode for final upsampling
"""
def __init__(
self,
image_size: int,
num_classes: int,
embed_dim: int = 6144,
preds_per_patch: int = 16,
main_tasks: Iterable[str] = ("rgb",),
patch_size: int = 16,
depth: int = 4,
interpolate_mode: str = "bilinear",
act_fn: nn.Module = nn.GELU,
dec_kernel: int = 1,
):
super().__init__()
self.main_tasks = main_tasks
self.patch_size = patch_size
self.embed_dim = embed_dim
self.preds_per_patch = preds_per_patch
self.class_dim = embed_dim // preds_per_patch
self.num_classes = num_classes
self.interpolate_mode = interpolate_mode
self.image_size = image_size
self.blocks = nn.Sequential(
*[ConvNeXtBlock(dim=self.class_dim) for _ in range(depth)]
)
if dec_kernel == 1:
self.final_layer_1 = nn.Sequential(
nn.Conv2d(self.class_dim, self.class_dim // 4, 1),
nn.BatchNorm2d(self.class_dim // 4),
act_fn(),
nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
)
self.final_layer_2 = nn.Sequential(
nn.Conv2d(self.class_dim // 4, self.class_dim // 16, 1),
nn.BatchNorm2d(self.class_dim // 16),
act_fn(),
nn.Upsample(size=image_size, mode=self.interpolate_mode),
)
self.final_layer = nn.Conv2d(self.class_dim // 16, self.num_classes, 1)
elif dec_kernel == 3:
self.final_layer_1 = nn.Sequential(
nn.Conv2d(
self.class_dim,
self.class_dim // 4,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(self.class_dim // 4),
act_fn(),
nn.Upsample(scale_factor=2, mode=self.interpolate_mode),
)
self.final_layer_2 = nn.Sequential(
nn.Conv2d(
self.class_dim // 4,
self.class_dim // 16,
kernel_size=3,
stride=1,
padding=1,
),
nn.BatchNorm2d(self.class_dim // 16),
act_fn(),
nn.Upsample(size=image_size, mode=self.interpolate_mode),
)
self.final_layer = nn.Conv2d(
self.class_dim // 16,
self.num_classes,
kernel_size=3,
stride=1,
padding=1,
)
else:
raise Exception(f"Unsupported dec_kernel {dec_kernel}")
self.apply(self._init_weights)
def init(self, dim_tokens_enc: int = 768):
"""
Initialize parts of decoder that are dependent on dimension of encoder tokens.
Should be called when setting up MultiMAE.
:param dim_tokens_enc: Dimension of tokens coming from encoder
"""
self.in_channels = dim_tokens_enc * len(self.main_tasks)
# Projection of encoder tokens to the patch dimension
self.proj_dec = nn.Linear(self.in_channels, self.embed_dim)
self._init_weights(self.proj_dec)
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def adapt_tokens(self, encoder_tokens: Tensor, input_info: Dict):
# Adapt tokens
x = []
for task in self.main_tasks:
start_idx = input_info["tasks"][task]["start_idx"]
end_idx = input_info["tasks"][task]["end_idx"]
x.append(encoder_tokens[:, start_idx:end_idx])
x = torch.cat(x, dim=-1)
return x
def forward(self, encoder_tokens: Tensor, input_info: Dict) -> Tensor:
H, W = input_info["image_size"]
N_H, N_W = H // self.patch_size, W // self.patch_size
x = self.adapt_tokens(encoder_tokens, input_info)
x = self.proj_dec(x)
x = rearrange(
x,
"b n (p c) -> b (n p) c",
n=N_H * N_W,
p=self.preds_per_patch,
c=self.class_dim,
)
x = rearrange(
x,
"b (nh nw ph pw) c -> b c (nh ph) (nw pw)",
nh=N_H,
nw=N_W,
ph=int(self.preds_per_patch**0.5),
pw=int(self.preds_per_patch**0.5),
)
x = self.blocks(x)
# for block in self.blocks:
# x = block(x)
# print(x.shape)
# print(x.shape)
x = self.final_layer_1(x)
# print(x.shape)
x = self.final_layer_2(x)
# print(x.shape)
x = self.final_layer(x)
# print(x.shape)
# Interpolate to sod res
# x = F.interpolate(x, size=(H, W), mode=self.interpolate_mode)
return x
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads=8,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: Tensor) -> Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x: Tensor) -> Tensor:
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio=4.0,
qkv_bias=False,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x: Tensor) -> Tensor:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MultiMAE(nn.Module):
"""MultiMAE: Multi-task Multi-modal Masked Autoencoder
This module performs masking in its forward pass.
The MultiViT module defined below inherits from this module and performs a regular forward pass,
and should be used instead for downstream tasks
:param input_adapters: Dictionary of task -> input adapters
:param output_adapters: Optional dictionary of task -> output adapters
:param num_global_tokens: Number of additional global tokens to add (like cls tokens), default is 1
:param dim_tokens: Dimension of encoder tokens
:param depth: Depth of encoder
:param num_heads: Number of attention heads
:param mlp_ratio: MLP hidden dim ratio
:param qkv_bias: Set to False to disable bias
:param drop_rate: Dropout after MLPs and Attention
:param attn_drop_rate: Attention matrix drop rate
:param drop_path_rate: DropPath drop rate
:param norm_layer: Type of normalization layer
"""
def __init__(
self,
input_adapters: Dict[str, PatchedInputAdapter],
output_adapters: Dict[str, ConvNeXtAdapter],
num_global_tokens: int = 1,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
freeze_encoder: bool = False,
num_additional_gt_tokens: int = 0, # @deprecated
actual_num_additional_gt_tokens: int = 0, # @deprecated
learnable_additional_gt_tokens: bool = False,
additional_gt_tokens_mlp_channels: List[int] = [],
ground_truth_version: int = -1,
A: float = 0.5,
):
super().__init__()
self.dim_tokens = dim_tokens
self.ground_truth_version = ground_truth_version
# Initialize input and output adapters
for adapter in input_adapters.values():
adapter.init(dim_tokens=dim_tokens)
self.input_adapters = nn.ModuleDict(input_adapters)
for adapter in output_adapters.values():
adapter.init(dim_tokens_enc=dim_tokens)
self.output_adapters = nn.ModuleDict(output_adapters)
# Additional learnable tokens that can be used by encoder to process/store global information
self.num_global_tokens = num_global_tokens
self.global_tokens = nn.Parameter(torch.zeros(1, num_global_tokens, dim_tokens))
trunc_normal_(self.global_tokens, std=0.02)
self.num_additional_gt_tokens = num_additional_gt_tokens # @deprecated
self.actual_num_additional_gt_tokens = (
actual_num_additional_gt_tokens # @deprecated
)
self.A = A
self.additional_gt_tokens_mlp_channels = additional_gt_tokens_mlp_channels
self.learnable_additional_gt_tokens = learnable_additional_gt_tokens
self.init_gt_tokens()
# Transformer encoder
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.encoder = nn.Sequential(
*[
Block(
dim=dim_tokens,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
)
for i in range(depth)
]
)
print(f"Encoder {count_parameters(self.encoder)}")
if freeze_encoder:
print("Freeze encoder")
for param in self.encoder.parameters():
param.requires_grad = False
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if "qkv" in name:
# treat the weights of Q, K, V separately
val = math.sqrt(
6.0 / float(m.weight.shape[0] // 3 + m.weight.shape[1])
)
nn.init.uniform_(m.weight, -val, val)
elif "kv" in name:
# treat the weights of K, V separately
val = math.sqrt(
6.0 / float(m.weight.shape[0] // 2 + m.weight.shape[1])
)
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if ".proj" in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
print(f"Total params: {count_parameters(self)}")
def init_gt_tokens(self):
"""Just prepare beforehand to save time in training
In inference, there is no need"""
addtional_gt_tokens: List[Tensor] = []
if self.num_additional_gt_tokens == 0:
self.token_mlp = nn.Identity()
return
if len(self.additional_gt_tokens_mlp_channels) > 0:
self.token_mlp = MLP(
self.dim_tokens,
self.additional_gt_tokens_mlp_channels + [self.dim_tokens],
)
else:
self.token_mlp = nn.Identity()
if self.ground_truth_version != 6:
T = 1 / (self.num_additional_gt_tokens * 4)
for i in range(self.actual_num_additional_gt_tokens):
t = [
2 * math.pi * (offset / self.dim_tokens - i * T)
for offset in range(self.dim_tokens)
]
addtional_gt_tokens.append(
nn.Parameter(
self.A * torch.cos(Tensor(t).unsqueeze(0).unsqueeze(0)),
requires_grad=self.learnable_additional_gt_tokens,
)
)
self.addtional_gt_tokens = nn.ParameterList(addtional_gt_tokens)
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
no_wd_set = {"global_tokens"}
for task, adapter in self.input_adapters.items():
if hasattr(adapter, "no_weight_decay"):
to_skip = adapter.no_weight_decay()
to_skip = set([f"input_adapters.{task}.{name}" for name in to_skip])
no_wd_set = no_wd_set | to_skip
for task, adapter in self.output_adapters.items():
if hasattr(adapter, "no_weight_decay"):
to_skip = adapter.no_weight_decay()
to_skip = set([f"output_adapters.{task}.{name}" for name in to_skip])
no_wd_set = no_wd_set | to_skip
return no_wd_set
def generate_input_info(
self, input_task_tokens: Dict[str, Tensor], image_size: Tuple[int, int]
) -> Dict[str, Tensor]:
input_info = OrderedDict()
i = 0
input_info["tasks"] = {}
for domain, tensor in input_task_tokens.items():
num_tokens: Union[int, Tensor] = tensor.shape[1]
if type(num_tokens) == Tensor:
num_tokens = num_tokens.item()
d = {
"num_tokens": num_tokens,
"has_2d_posemb": True,
"start_idx": i,
"end_idx": i + num_tokens,
}
i += num_tokens
input_info["tasks"][domain] = d
input_info["image_size"] = image_size
input_info["num_task_tokens"] = i
input_info["num_global_tokens"] = self.num_global_tokens
return input_info
class MultiViT(MultiMAE):
def extract_B_H_W(self, x: Dict[str, Tensor]) -> Tuple[int, int, int]:
# If input x is a Tensor, assume it's RGB
# x = {'rgb': x} if isinstance(x, Tensor) else x
# Need image size for tokens->image reconstruction
if "rgb" in x:
B, _, H, W = x["rgb"].shape
elif "sod" in x:
B, H, W = x["sod"].shape
H *= self.input_adapters["sod"].stride_level
W *= self.input_adapters["sod"].stride_level
else:
B, _, H, W = list(x.values())[0].shape
return B, H, W
def process_input(
self,
x: Dict[str, Tensor],
gt_index_lst: List[int],
num_gts_lst: List[int],
) -> Tuple[Tensor, Dict[str, Tensor]]:
"""
len(gt_i) must equal to x.shape[0] when self.num_additional_gt_tokens > 0
"""
B, H, W = self.extract_B_H_W(x)
# Encode selected inputs to tokens
input_task_tokens: Dict[str, Tensor] = {
domain: self.input_adapters[domain](tensor)
for domain, tensor in x.items()
if domain in self.input_adapters
}
input_info = self.generate_input_info(
input_task_tokens=input_task_tokens, image_size=(H, W)
)
input_tokens = torch.cat(
[task_tokens for task_tokens in input_task_tokens.values()], dim=1
)
# Add global tokens to input tokens
global_tokens = repeat(self.global_tokens, "() n d -> b n d", b=B)
if self.ground_truth_version == 6:
# We need two inputs: gt_index, num_gts
assert len(gt_index_lst) == len(num_gts_lst)
additional_gt_tokens = []
for gt_index, num_gts in zip(gt_index_lst, num_gts_lst):
T = 1 / num_gts
i = gt_index
t = [
2 * math.pi * (offset / self.dim_tokens - i * T)
for offset in range(self.dim_tokens)
]
additional_gt_token = self.A * torch.cos(
Tensor(t).unsqueeze(0).unsqueeze(0)
)
additional_gt_tokens.append(additional_gt_token)
additional_gt_tokens = torch.cat(additional_gt_tokens, dim=0).to(
input_tokens.device
)
additional_gt_tokens = self.token_mlp(additional_gt_tokens)
input_tokens = torch.cat(
[input_tokens, global_tokens, additional_gt_tokens], dim=1
)
else:
if self.num_additional_gt_tokens > 0:
assert gt_index_lst is not None and len(gt_index_lst) == B
additional_gt_tokens: Tensor = torch.cat(
[self.addtional_gt_tokens[gt_i] for gt_i in gt_index_lst], dim=0
)
additional_gt_tokens = self.token_mlp(additional_gt_tokens)
input_tokens = torch.cat(
[input_tokens, global_tokens, additional_gt_tokens], dim=1
)
else:
input_tokens = torch.cat([input_tokens, global_tokens], dim=1)
return input_tokens, input_info
def forward(
self,
x: Dict[str, Tensor],
gt_index_lst: Optional[List[int]] = None,
max_gts_lst: Optional[List[int]] = None,
) -> Dict[str, Tensor]:
"""
Forward pass through input adapters, transformer encoder and output adapters.
:param x: Dictionary of tensors
:param outputs: List of outputs. For ex: outputs=['sod', 'depth']. Make sure 'sod' placed first!
"""
input_tokens, input_info = self.process_input(x, gt_index_lst, max_gts_lst)
# Pass tokens through Transformer
encoder_tokens = self.encoder(input_tokens)
# Decode tokens for each task using task-specific output adapters
preds = {
domain: self.output_adapters[domain](
encoder_tokens=encoder_tokens,
input_info=input_info,
)
for domain in self.output_adapters
}
return preds
def interpolate_pos_embed_multimae(
model: MultiViT,
checkpoint_model: Dict[str, Tensor],
) -> None:
pattern = "input_adapters\.(.*)\.pos_emb"
matched_keys = [k for k in checkpoint_model if bool(re.match(pattern, k))]
for key in matched_keys:
domain = re.match(pattern, key).group(1) # group(0) is entire matched regex
if getattr(model.input_adapters, domain, None) is not None:
pos_embed_checkpoint = checkpoint_model[key]
_, _, orig_H, orig_W = pos_embed_checkpoint.shape
_, _, new_H, new_W = getattr(model.input_adapters, domain).pos_emb.shape
if (orig_H != new_H) or (orig_W != new_W):
print(
f"Key {key}: Position interpolate from {orig_H}x{orig_W} to {new_H}x{new_W}"
)
pos_embed_checkpoint = torch.nn.functional.interpolate(
pos_embed_checkpoint,
size=(new_H, new_W),
mode="bicubic",
align_corners=False,
)
checkpoint_model[key] = pos_embed_checkpoint
def construct_adapters(cfg: base_cfg):
INPUT_ADAPTERS = {
"rgb": PatchedInputAdapter(
num_channels=3,
stride_level=1,
patch_size_full=cfg.input_patch_size,
image_size=cfg.image_size,
learnable_pos_emb=cfg.learnable_pos_emb,
),
"depth": PatchedInputAdapter(
num_channels=1,
stride_level=1,
patch_size_full=cfg.input_patch_size,
image_size=cfg.image_size,
learnable_pos_emb=cfg.learnable_pos_emb,
),
}
num_classes = cfg.num_classes
if cfg.ground_truth_version in [5, 6]:
num_classes = 1
OUTPUT_ADAPTERS = {
"sod": partial(
ConvNeXtAdapter,
num_classes=num_classes,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
"rgb": partial(
ConvNeXtAdapter,
num_classes=3,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
"depth": partial(
ConvNeXtAdapter,
num_classes=1,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
),
}
if cfg.ground_truth_version == 3:
for i in range(cfg.num_classes):
OUTPUT_ADAPTERS[f"sod{i}"] = partial(
ConvNeXtAdapter,
num_classes=1,
image_size=cfg.image_size,
embed_dim=cfg.embed_dim,
patch_size=cfg.input_patch_size,
preds_per_patch=cfg.output_patch_size,
depth=cfg.decoder_depth,
interpolate_mode=cfg.decoder_interpolate_mode,
main_tasks=cfg.decoder_main_tasks,
act_fn=cfg.act_fn,
dec_kernel=cfg.dec_kernel,
)
return INPUT_ADAPTERS, OUTPUT_ADAPTERS
def generate_smultimae_model(cfg: base_cfg) -> Tuple[MultiViT, List[Dict]]:
"""MULTIMAE"""
assert len(cfg.decoder_main_tasks) == len(
cfg.outputs
), "Length of decoder main tasks must match length of outputs"
INPUT_ADAPTERS, OUTPUT_ADAPTERS = construct_adapters(cfg)
input_adapters = dict()
for input_key in cfg.inputs:
input_adapters[input_key] = INPUT_ADAPTERS[input_key]
output_adapters = dict()
for output_key, decoder_main_tasks_per_output in zip(
cfg.outputs, cfg.decoder_main_tasks
):
output_adapters[output_key] = OUTPUT_ADAPTERS[output_key](
main_tasks=decoder_main_tasks_per_output
)
num_additional_gt_tokens = 0 # @deprecated
actual_num_additional_gt_tokens = 0 # @deprecated
if cfg.ground_truth_version in [5, 6]: # @deprecated
num_additional_gt_tokens = cfg.num_classes # @deprecated
actual_num_additional_gt_tokens = cfg.actual_num_classes # @deprecated
model = MultiViT(
input_adapters=input_adapters,
output_adapters=output_adapters,
freeze_encoder=cfg.freeze_encoder,
drop_path_rate=0.1,
dim_tokens=cfg.dim_tokens,
depth=cfg.encoder_depth,
num_heads=cfg.num_heads,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
num_additional_gt_tokens=num_additional_gt_tokens, # @deprecated
actual_num_additional_gt_tokens=actual_num_additional_gt_tokens, # @deprecated
ground_truth_version=cfg.ground_truth_version,
)
# return load_pretrained_backbone(cfg, model)
return model, []