Spaces:
Sleeping
Sleeping
import colorsys | |
from typing import Union | |
import numpy as np | |
import cv2 | |
import matplotlib.colors as mplc | |
import pycocotools.mask as mask_util | |
import matplotlib.figure as mplfigure | |
from matplotlib.backends.backend_agg import FigureCanvasAgg | |
import matplotlib as mpl | |
from enum import Enum, unique | |
from PIL import Image | |
_LARGE_MASK_AREA_THRESH = 120000 | |
_COLORS = ( | |
np.array( | |
[ | |
0.000, | |
0.447, | |
0.741, | |
0.850, | |
0.325, | |
0.098, | |
0.929, | |
0.694, | |
0.125, | |
0.494, | |
0.184, | |
0.556, | |
0.466, | |
0.674, | |
0.188, | |
0.301, | |
0.745, | |
0.933, | |
0.635, | |
0.078, | |
0.184, | |
0.300, | |
0.300, | |
0.300, | |
0.600, | |
0.600, | |
0.600, | |
1.000, | |
0.000, | |
0.000, | |
1.000, | |
0.500, | |
0.000, | |
0.749, | |
0.749, | |
0.000, | |
0.000, | |
1.000, | |
0.000, | |
0.000, | |
0.000, | |
1.000, | |
0.667, | |
0.000, | |
1.000, | |
0.333, | |
0.333, | |
0.000, | |
0.333, | |
0.667, | |
0.000, | |
0.333, | |
1.000, | |
0.000, | |
0.667, | |
0.333, | |
0.000, | |
0.667, | |
0.667, | |
0.000, | |
0.667, | |
1.000, | |
0.000, | |
1.000, | |
0.333, | |
0.000, | |
1.000, | |
0.667, | |
0.000, | |
1.000, | |
1.000, | |
0.000, | |
0.000, | |
0.333, | |
0.500, | |
0.000, | |
0.667, | |
0.500, | |
0.000, | |
1.000, | |
0.500, | |
0.333, | |
0.000, | |
0.500, | |
0.333, | |
0.333, | |
0.500, | |
0.333, | |
0.667, | |
0.500, | |
0.333, | |
1.000, | |
0.500, | |
0.667, | |
0.000, | |
0.500, | |
0.667, | |
0.333, | |
0.500, | |
0.667, | |
0.667, | |
0.500, | |
0.667, | |
1.000, | |
0.500, | |
1.000, | |
0.000, | |
0.500, | |
1.000, | |
0.333, | |
0.500, | |
1.000, | |
0.667, | |
0.500, | |
1.000, | |
1.000, | |
0.500, | |
0.000, | |
0.333, | |
1.000, | |
0.000, | |
0.667, | |
1.000, | |
0.000, | |
1.000, | |
1.000, | |
0.333, | |
0.000, | |
1.000, | |
0.333, | |
0.333, | |
1.000, | |
0.333, | |
0.667, | |
1.000, | |
0.333, | |
1.000, | |
1.000, | |
0.667, | |
0.000, | |
1.000, | |
0.667, | |
0.333, | |
1.000, | |
0.667, | |
0.667, | |
1.000, | |
0.667, | |
1.000, | |
1.000, | |
1.000, | |
0.000, | |
1.000, | |
1.000, | |
0.333, | |
1.000, | |
1.000, | |
0.667, | |
1.000, | |
0.333, | |
0.000, | |
0.000, | |
0.500, | |
0.000, | |
0.000, | |
0.667, | |
0.000, | |
0.000, | |
0.833, | |
0.000, | |
0.000, | |
1.000, | |
0.000, | |
0.000, | |
0.000, | |
0.167, | |
0.000, | |
0.000, | |
0.333, | |
0.000, | |
0.000, | |
0.500, | |
0.000, | |
0.000, | |
0.667, | |
0.000, | |
0.000, | |
0.833, | |
0.000, | |
0.000, | |
1.000, | |
0.000, | |
0.000, | |
0.000, | |
0.167, | |
0.000, | |
0.000, | |
0.333, | |
0.000, | |
0.000, | |
0.500, | |
0.000, | |
0.000, | |
0.667, | |
0.000, | |
0.000, | |
0.833, | |
0.000, | |
0.000, | |
1.000, | |
0.000, | |
0.000, | |
0.000, | |
0.143, | |
0.143, | |
0.143, | |
0.857, | |
0.857, | |
0.857, | |
1.000, | |
1.000, | |
1.000, | |
] | |
) | |
.astype(np.float32) | |
.reshape(-1, 3) | |
) | |
def random_color(rgb=False, maximum=255): | |
""" | |
Args: | |
rgb (bool): whether to return RGB colors or BGR colors. | |
maximum (int): either 255 or 1 | |
Returns: | |
ndarray: a vector of 3 numbers | |
""" | |
idx = np.random.randint(0, len(_COLORS)) | |
ret = _COLORS[idx] * maximum | |
if not rgb: | |
ret = ret[::-1] | |
return ret | |
class ColorMode(Enum): | |
""" | |
Enum of different color modes to use for instance visualizations. | |
""" | |
IMAGE = 0 | |
""" | |
Picks a random color for every instance and overlay segmentations with low opacity. | |
""" | |
SEGMENTATION = 1 | |
""" | |
Let instances of the same category have similar colors | |
(from metadata.thing_colors), and overlay them with | |
high opacity. This provides more attention on the quality of segmentation. | |
""" | |
IMAGE_BW = 2 | |
""" | |
Same as IMAGE, but convert all areas without masks to gray-scale. | |
Only available for drawing per-instance mask predictions. | |
""" | |
class VisImage: | |
def __init__(self, img, scale=1.0): | |
""" | |
Args: | |
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255]. | |
scale (float): scale the input image | |
""" | |
self.img = img | |
self.scale = scale | |
self.width, self.height = img.shape[1], img.shape[0] | |
self._setup_figure(img) | |
def _setup_figure(self, img): | |
""" | |
Args: | |
Same as in :meth:`__init__()`. | |
Returns: | |
fig (matplotlib.pyplot.figure): top level container for all the image plot elements. | |
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system. | |
""" | |
fig = mplfigure.Figure(frameon=False) | |
self.dpi = fig.get_dpi() | |
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation | |
# (https://github.com/matplotlib/matplotlib/issues/15363) | |
fig.set_size_inches( | |
(self.width * self.scale + 1e-2) / self.dpi, | |
(self.height * self.scale + 1e-2) / self.dpi, | |
) | |
self.canvas = FigureCanvasAgg(fig) | |
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig) | |
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) | |
ax.axis("off") | |
self.fig = fig | |
self.ax = ax | |
self.reset_image(img) | |
def reset_image(self, img): | |
""" | |
Args: | |
img: same as in __init__ | |
""" | |
img = img.astype("uint8") | |
self.ax.imshow( | |
img, extent=(0, self.width, self.height, 0), interpolation="nearest" | |
) | |
def save(self, filepath): | |
""" | |
Args: | |
filepath (str): a string that contains the absolute path, including the file name, where | |
the visualized image will be saved. | |
""" | |
self.fig.savefig(filepath) | |
def get_image(self): | |
""" | |
Returns: | |
ndarray: | |
the visualized image of shape (H, W, 3) (RGB) in uint8 type. | |
The shape is scaled w.r.t the input image using the given `scale` argument. | |
""" | |
canvas = self.canvas | |
s, (width, height) = canvas.print_to_buffer() | |
# buf = io.BytesIO() # works for cairo backend | |
# canvas.print_rgba(buf) | |
# width, height = self.width, self.height | |
# s = buf.getvalue() | |
buffer = np.frombuffer(s, dtype="uint8") | |
img_rgba = buffer.reshape(height, width, 4) | |
rgb, alpha = np.split(img_rgba, [3], axis=2) | |
return rgb.astype("uint8") | |
class GenericMask: | |
""" | |
Attribute: | |
polygons (list[ndarray]): list[ndarray]: polygons for this mask. | |
Each ndarray has format [x, y, x, y, ...] | |
mask (ndarray): a binary mask | |
""" | |
def __init__(self, mask_or_polygons, height, width): | |
self._mask = self._polygons = self._has_holes = None | |
self.height = height | |
self.width = width | |
m = mask_or_polygons | |
if isinstance(m, dict): | |
# RLEs | |
assert "counts" in m and "size" in m | |
if isinstance(m["counts"], list): # uncompressed RLEs | |
h, w = m["size"] | |
assert h == height and w == width | |
m = mask_util.frPyObjects(m, h, w) | |
self._mask = mask_util.decode(m)[:, :] | |
return | |
if isinstance(m, list): # list[ndarray] | |
self._polygons = [np.asarray(x).reshape(-1) for x in m] | |
return | |
if isinstance(m, np.ndarray): # assumed to be a binary mask | |
assert m.shape[1] != 2, m.shape | |
assert m.shape == ( | |
height, | |
width, | |
), f"mask shape: {m.shape}, target dims: {height}, {width}" | |
self._mask = m.astype("uint8") | |
return | |
raise ValueError( | |
"GenericMask cannot handle object {} of type '{}'".format(m, type(m)) | |
) | |
def mask(self): | |
if self._mask is None: | |
self._mask = self.polygons_to_mask(self._polygons) | |
return self._mask | |
def polygons(self): | |
if self._polygons is None: | |
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
return self._polygons | |
def has_holes(self): | |
if self._has_holes is None: | |
if self._mask is not None: | |
self._polygons, self._has_holes = self.mask_to_polygons(self._mask) | |
else: | |
self._has_holes = ( | |
False # if original format is polygon, does not have holes | |
) | |
return self._has_holes | |
def mask_to_polygons(self, mask): | |
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level | |
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1. | |
# Internal contours (holes) are placed in hierarchy-2. | |
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours. | |
mask = np.ascontiguousarray( | |
mask | |
) # some versions of cv2 does not support incontiguous arr | |
res = cv2.findContours( | |
mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE | |
) | |
hierarchy = res[-1] | |
if hierarchy is None: # empty mask | |
return [], False | |
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 | |
res = res[-2] | |
res = [x.flatten() for x in res] | |
# These coordinates from OpenCV are integers in range [0, W-1 or H-1]. | |
# We add 0.5 to turn them into real-value coordinate space. A better solution | |
# would be to first +0.5 and then dilate the returned polygon by 0.5. | |
res = [x + 0.5 for x in res if len(x) >= 6] | |
return res, has_holes | |
def polygons_to_mask(self, polygons): | |
rle = mask_util.frPyObjects(polygons, self.height, self.width) | |
rle = mask_util.merge(rle) | |
return mask_util.decode(rle)[:, :] | |
def area(self): | |
return self.mask.sum() | |
def bbox(self): | |
p = mask_util.frPyObjects(self.polygons, self.height, self.width) | |
p = mask_util.merge(p) | |
bbox = mask_util.toBbox(p) | |
bbox[2] += bbox[0] | |
bbox[3] += bbox[1] | |
return bbox | |
class Visualizer: | |
""" | |
Visualizer that draws data about detection/segmentation on images. | |
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}` | |
that draw primitive objects to images, as well as high-level wrappers like | |
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}` | |
that draw composite data in some pre-defined style. | |
Note that the exact visualization style for the high-level wrappers are subject to change. | |
Style such as color, opacity, label contents, visibility of labels, or even the visibility | |
of objects themselves (e.g. when the object is too small) may change according | |
to different heuristics, as long as the results still look visually reasonable. | |
To obtain a consistent style, you can implement custom drawing functions with the | |
abovementioned primitive methods instead. If you need more customized visualization | |
styles, you can process the data yourself following their format documented in | |
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not | |
intend to satisfy everyone's preference on drawing styles. | |
This visualizer focuses on high rendering quality rather than performance. It is not | |
designed to be used for real-time applications. | |
""" | |
# TODO implement a fast, rasterized version using OpenCV | |
def __init__( | |
self, | |
img_rgb: Union[Image.Image, np.ndarray], | |
scale=1.0, | |
instance_mode=ColorMode.IMAGE, | |
): | |
""" | |
Args: | |
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to | |
the height and width of the image respectively. C is the number of | |
color channels. The image is required to be in RGB format since that | |
is a requirement of the Matplotlib library. The image is also expected | |
to be in the range [0, 255]. | |
instance_mode (ColorMode): defines one of the pre-defined style for drawing | |
instances on an image. | |
""" | |
if type(img_rgb) == np.ndarray: | |
img_rgb = img_rgb[:, :, ::-1] | |
else: | |
img_rgb = np.array(img_rgb)[:, :, ::-1] | |
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8) | |
self.output = VisImage(self.img, scale=scale) | |
# too small texts are useless, therefore clamp to 9 | |
self._default_font_size = max( | |
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale | |
) | |
self._instance_mode = instance_mode | |
def draw_binary_mask( | |
self, | |
binary_mask, | |
color=None, | |
*, | |
edge_color=None, | |
text=None, | |
alpha=0.5, | |
area_threshold=10, | |
): | |
""" | |
Args: | |
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and | |
W is the image width. Each value in the array is either a 0 or 1 value of uint8 | |
type. | |
color: color of the mask. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. If None, will pick a random color. | |
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
full list of formats that are accepted. | |
text (str): if None, will be drawn on the object | |
alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
area_threshold (float): a connected component smaller than this area will not be shown. | |
Returns: | |
output (VisImage): image object with mask drawn. | |
""" | |
if color is None: | |
color = random_color(rgb=True, maximum=1) | |
color = mplc.to_rgb(color) | |
has_valid_segment = False | |
binary_mask = binary_mask.astype("uint8") # opencv needs uint8 | |
mask = GenericMask(binary_mask, self.output.height, self.output.width) | |
shape2d = (binary_mask.shape[0], binary_mask.shape[1]) | |
if not mask.has_holes: | |
# draw polygons for regular masks | |
for segment in mask.polygons: | |
area = mask_util.area( | |
mask_util.frPyObjects([segment], shape2d[0], shape2d[1]) | |
) | |
if area < (area_threshold or 0): | |
continue | |
has_valid_segment = True | |
segment = segment.reshape(-1, 2) | |
self.draw_polygon( | |
segment, color=color, edge_color=edge_color, alpha=alpha | |
) | |
else: | |
# TODO: Use Path/PathPatch to draw vector graphics: | |
# https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon | |
rgba = np.zeros(shape2d + (4,), dtype="float32") | |
rgba[:, :, :3] = color | |
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha | |
has_valid_segment = True | |
self.output.ax.imshow( | |
rgba, extent=(0, self.output.width, self.output.height, 0) | |
) | |
if text is not None and has_valid_segment: | |
lighter_color = self._change_color_brightness(color, brightness_factor=0.7) | |
self._draw_text_in_mask(binary_mask, text, lighter_color) | |
return self.output | |
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5): | |
""" | |
Args: | |
segment: numpy array of shape Nx2, containing all the points in the polygon. | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a | |
full list of formats that are accepted. If not provided, a darker shade | |
of the polygon color will be used instead. | |
alpha (float): blending efficient. Smaller values lead to more transparent masks. | |
Returns: | |
output (VisImage): image object with polygon drawn. | |
""" | |
if edge_color is None: | |
# make edge color darker than the polygon color | |
if alpha > 0.8: | |
edge_color = self._change_color_brightness( | |
color, brightness_factor=-0.7 | |
) | |
else: | |
edge_color = color | |
edge_color = mplc.to_rgb(edge_color) + (1,) | |
polygon = mpl.patches.Polygon( | |
segment, | |
fill=True, | |
facecolor=mplc.to_rgb(color) + (alpha,), | |
edgecolor=edge_color, | |
linewidth=max(self._default_font_size // 15 * self.output.scale, 1), | |
) | |
self.output.ax.add_patch(polygon) | |
return self.output | |
""" | |
Internal methods: | |
""" | |
def _change_color_brightness(self, color, brightness_factor): | |
""" | |
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with | |
less or more saturation than the original color. | |
Args: | |
color: color of the polygon. Refer to `matplotlib.colors` for a full list of | |
formats that are accepted. | |
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of | |
0 will correspond to no change, a factor in [-1.0, 0) range will result in | |
a darker color and a factor in (0, 1.0] range will result in a lighter color. | |
Returns: | |
modified_color (tuple[double]): a tuple containing the RGB values of the | |
modified color. Each value in the tuple is in the [0.0, 1.0] range. | |
""" | |
assert brightness_factor >= -1.0 and brightness_factor <= 1.0 | |
color = mplc.to_rgb(color) | |
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) | |
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) | |
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness | |
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness | |
modified_color = colorsys.hls_to_rgb( | |
polygon_color[0], modified_lightness, polygon_color[2] | |
) | |
return modified_color | |
def _draw_text_in_mask(self, binary_mask, text, color): | |
""" | |
Find proper places to draw text given a binary mask. | |
""" | |
# TODO sometimes drawn on wrong objects. the heuristics here can improve. | |
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats( | |
binary_mask, 8 | |
) | |
if stats[1:, -1].size == 0: | |
return | |
largest_component_id = np.argmax(stats[1:, -1]) + 1 | |
# draw text on the largest component, as well as other very large components. | |
for cid in range(1, _num_cc): | |
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH: | |
# median is more stable than centroid | |
# center = centroids[largest_component_id] | |
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1] | |
self.draw_text(text, center, color=color) | |
def get_output(self): | |
""" | |
Returns: | |
output (VisImage): the image output containing the visualizations added | |
to the image. | |
""" | |
return self.output | |
def apply_threshold(pred: np.ndarray) -> np.ndarray: | |
"""Apply threshold to a salient map | |
Args: | |
pred (np.ndarray): each pixel is in range [0, 255] | |
Returns: | |
np.ndarray: each pixel is only 0.0 or 1.0 | |
""" | |
binary_mask = pred / 255.0 | |
binary_mask[binary_mask >= 0.5] = 1.0 | |
binary_mask[binary_mask < 0.5] = 0.0 | |
return binary_mask | |
def normalize(data: np.ndarray) -> np.ndarray: | |
return (data - data.min()) / (data.max() - data.min() + 1e-8) | |
def post_processing_depth(depth: np.ndarray) -> np.ndarray: | |
depth = (normalize(depth) * 255).astype(np.uint8) | |
return cv2.applyColorMap(depth, cv2.COLORMAP_OCEAN) | |
def apply_vis_to_image( | |
rgb: np.ndarray, binary_mask: np.ndarray, color: np.ndarray | |
) -> np.ndarray: | |
if rgb.shape[:2] != binary_mask.shape[:2]: | |
print(rgb.shape, binary_mask.shape) | |
binary_mask = cv2.resize(binary_mask, [rgb.shape[1], rgb.shape[0]]) | |
visualizer = Visualizer(rgb) | |
vis_image: VisImage = visualizer.draw_binary_mask(binary_mask, color) | |
vis_image = vis_image.get_image()[:, :, ::-1] | |
return vis_image | |