Spaces:
Paused
Paused
File size: 11,204 Bytes
fd7e04e 9ae8083 6676090 842df92 fd7e04e 5250b05 08625ae fd7e04e 5a66be2 86120d5 5a66be2 86120d5 46440c4 b042d9f 86120d5 0a6e3ff 86120d5 35cf0ae 86120d5 8f827eb 86120d5 46440c4 5add387 46440c4 8f827eb 46440c4 8f827eb 46440c4 8f827eb 46440c4 8f827eb 46440c4 7affa2b 46440c4 7affa2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
import pandas as pd
import pickle
from utils import create_new_features, normalize, init_new_pred
with open('./trained_model.pkl', 'rb') as file:
model = pickle.load(file)
# Define min and max values from the dictionaries
min_dict = {
'bedrooms': 0,
'bathrooms': 0,
'sqft_living': 370,
'sqft_lot': 638,
'floors': 1,
'waterfront': 0,
'view': 0,
'condition': 1,
'sqft_above': 370,
'sqft_basement': 0,
'yr_built': 1900,
'yr_renovated': 0,
'house_age': 0,
'years_since_renovation': 0
}
max_dict = {
'bedrooms': 9,
'bathrooms': 8,
'sqft_living': 13540,
'sqft_lot': 1074218,
'floors': 3,
'waterfront': 1,
'view': 4,
'condition': 5,
'sqft_above': 9410,
'sqft_basement': 4820,
'yr_built': 2014,
'yr_renovated': 2014,
'house_age': 114,
'years_since_renovation': 2014
}
# Create two columns: one for the city and one for the map
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
# Display city dropdown in the first column
with col1:
st.subheader('Features')
city = st.selectbox(
'Select City',
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill',
'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City',
'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore',
'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina',
'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park',
'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond',
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
'Woodinville', 'Yarrow Point'],
)
waterfront = st.checkbox('Waterfront', value=False)
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot'])
floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors'])
view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view'])
condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition'])
sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above'])
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=min_dict['sqft_basement'])
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=min_dict['yr_built'])
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=min_dict['yr_renovated'])
new_pred = init_new_pred()
new_pred['bedrooms'] = bedrooms
new_pred['bathrooms'] = bathrooms
new_pred['sqft_living'] = sqft_living
new_pred['sqft_lot'] = sqft_lot
new_pred['floors'] = floors
new_pred['waterfront'] = int(waterfront)
new_pred['view'] = view
new_pred['condition'] = condition
new_pred['sqft_above'] = sqft_above
new_pred['sqft_basement'] = sqft_basement
new_pred['yr_built'] = yr_built
new_pred['yr_renovated'] = yr_renovated
new_pred[f'city_{city}'] = 1
# Process the prediction
new_pred = pd.DataFrame([new_pred])
new_pred = create_new_features(new_pred)
new_pred = normalize(new_pred)
# Predict the price
predicted_price = model.predict(new_pred)
# Display the map in the second column
with col2:
st.subheader('Map')
if city == 'Seattle':
map_data = pd.DataFrame({
'latitude': [47.6097, 47.6205, 47.6762],
'longitude': [-122.3331, -122.3493, -122.3198]
})
elif city == 'Bellevue':
map_data = pd.DataFrame({
'latitude': [47.6101, 47.6183],
'longitude': [-122.2015, -122.2046]
})
elif city == 'Algona':
map_data = pd.DataFrame({
'latitude': [47.3162],
'longitude': [-122.2295]
})
elif city == 'Auburn':
map_data = pd.DataFrame({
'latitude': [47.3073],
'longitude': [-122.2284]
})
elif city == 'Beaux Arts Village':
map_data = pd.DataFrame({
'latitude': [47.6141],
'longitude': [-122.2125]
})
elif city == 'Black Diamond':
map_data = pd.DataFrame({
'latitude': [47.3465],
'longitude': [-121.9877]
})
elif city == 'Bothell':
map_data = pd.DataFrame({
'latitude': [47.7595],
'longitude': [-122.2056]
})
elif city == 'Burien':
map_data = pd.DataFrame({
'latitude': [47.4702],
'longitude': [-122.3359]
})
elif city == 'Carnation':
map_data = pd.DataFrame({
'latitude': [47.6460],
'longitude': [-121.9758]
})
elif city == 'Clyde Hill':
map_data = pd.DataFrame({
'latitude': [47.6330],
'longitude': [-122.2107]
})
elif city == 'Covington':
map_data = pd.DataFrame({
'latitude': [47.3765],
'longitude': [-122.0288]
})
elif city == 'Des Moines':
map_data = pd.DataFrame({
'latitude': [47.3840],
'longitude': [-122.3061]
})
elif city == 'Duvall':
map_data = pd.DataFrame({
'latitude': [47.7332],
'longitude': [-121.9916]
})
elif city == 'Enumclaw':
map_data = pd.DataFrame({
'latitude': [47.2059],
'longitude': [-121.9876]
})
elif city == 'Fall City':
map_data = pd.DataFrame({
'latitude': [47.5980],
'longitude': [-121.8896]
})
elif city == 'Federal Way':
map_data = pd.DataFrame({
'latitude': [47.3220],
'longitude': [-122.3126]
})
elif city == 'Inglewood-Finn Hill':
map_data = pd.DataFrame({
'latitude': [47.7338],
'longitude': [-122.2780]
})
elif city == 'Issaquah':
map_data = pd.DataFrame({
'latitude': [47.5410],
'longitude': [-122.0311]
})
elif city == 'Kenmore':
map_data = pd.DataFrame({
'latitude': [47.7557],
'longitude': [-122.2416]
})
elif city == 'Kent':
map_data = pd.DataFrame({
'latitude': [47.3809],
'longitude': [-122.2348]
})
elif city == 'Kirkland':
map_data = pd.DataFrame({
'latitude': [47.6810],
'longitude': [-122.2087]
})
elif city == 'Lake Forest Park':
map_data = pd.DataFrame({
'latitude': [47.7318],
'longitude': [-122.2764]
})
elif city == 'Maple Valley':
map_data = pd.DataFrame({
'latitude': [47.3610],
'longitude': [-122.0240]
})
elif city == 'Medina':
map_data = pd.DataFrame({
'latitude': [47.6357],
'longitude': [-122.2169]
})
elif city == 'Mercer Island':
map_data = pd.DataFrame({
'latitude': [47.5703],
'longitude': [-122.2264]
})
elif city == 'Milton':
map_data = pd.DataFrame({
'latitude': [47.2335],
'longitude': [-122.2730]
})
elif city == 'Newcastle':
map_data = pd.DataFrame({
'latitude': [47.5477],
'longitude': [-122.1711]
})
elif city == 'Normandy Park':
map_data = pd.DataFrame({
'latitude': [47.4051],
'longitude': [-122.3376]
})
elif city == 'North Bend':
map_data = pd.DataFrame({
'latitude': [47.4904],
'longitude': [-121.7852]
})
elif city == 'Pacific':
map_data = pd.DataFrame({
'latitude': [47.3197],
'longitude': [-122.2786]
})
elif city == 'Preston':
map_data = pd.DataFrame({
'latitude': [47.5420],
'longitude': [-121.9214]
})
elif city == 'Ravensdale':
map_data = pd.DataFrame({
'latitude': [47.3485],
'longitude': [-121.9807]
})
elif city == 'Redmond':
map_data = pd.DataFrame({
'latitude': [47.6734],
'longitude': [-122.1215]
})
elif city == 'Renton':
map_data = pd.DataFrame({
'latitude': [47.4829],
'longitude': [-122.2170]
})
elif city == 'Sammamish':
map_data = pd.DataFrame({
'latitude': [47.6162],
'longitude': [-122.0394]
})
elif city == 'SeaTac':
map_data = pd.DataFrame({
'latitude': [47.4484],
'longitude': [-122.3085]
})
elif city == 'Shoreline':
map_data = pd.DataFrame({
'latitude': [47.7554],
'longitude': [-122.3410]
})
elif city == 'Skykomish':
map_data = pd.DataFrame({
'latitude': [47.7054],
'longitude': [-121.4848]
})
elif city == 'Snoqualmie':
map_data = pd.DataFrame({
'latitude': [47.5410],
'longitude': [-121.8340]
})
elif city == 'Snoqualmie Pass':
map_data = pd.DataFrame({
'latitude': [47.4286],
'longitude': [-121.4420]
})
elif city == 'Tukwila':
map_data = pd.DataFrame({
'latitude': [47.4835],
'longitude': [-122.2585]
})
elif city == 'Vashon':
map_data = pd.DataFrame({
'latitude': [47.4337],
'longitude': [-122.4660]
})
elif city == 'Woodinville':
map_data = pd.DataFrame({
'latitude': [47.7524],
'longitude': [-122.1576]
})
elif city == 'Yarrow Point':
map_data = pd.DataFrame({
'latitude': [47.6348],
'longitude': [-122.2218]
})
st.map(map_data)
# Placeholder for displaying the predicted price at the top
price_placeholder = st.empty()
# Display the predicted price at the top of the app
# price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
price_placeholder.markdown(
f"<h1 style='font-size: 24px;'>Predicted Price: ${predicted_price[0][0]:,.2f}</h1>",
unsafe_allow_html=True
)
|