File size: 6,583 Bytes
5ccbe05
170a088
 
 
 
5ccbe05
 
 
7bd86a9
ae55c78
 
5ccbe05
43b5eac
5ccbe05
b2fc46e
2f7c171
097c217
2f7c171
d4bd893
5ccbe05
 
 
7bd86a9
2eb8cb0
5ccbe05
 
95cd467
 
 
 
 
 
 
 
 
 
5ccbe05
 
 
ae55c78
 
5ccbe05
ae55c78
 
 
 
 
6ffefdd
ae55c78
 
 
 
429b741
 
b1030db
 
ae55c78
 
 
 
 
 
 
 
b4a4293
ae55c78
429b741
 
 
 
 
 
 
 
 
 
 
 
170a088
43b5eac
7bd86a9
43b5eac
5ccbe05
ae55c78
 
 
 
 
 
 
 
 
 
 
 
 
 
649e5b3
ae55c78
 
 
170a088
 
ae55c78
 
 
 
 
 
 
097c217
170a088
ae55c78
 
 
 
 
 
 
 
 
 
170a088
 
ae55c78
 
 
 
f5b436e
ae55c78
 
95cd467
6ffefdd
95cd467
 
 
5ccbe05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd86a9
5ccbe05
 
 
43b5eac
5ccbe05
 
 
7bd86a9
5ccbe05
 
 
 
7bd86a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
# import ast
# import argparse
# import glob
# import pickle
import gradio as gr
import numpy as np
import pandas as pd
import os
from collections import defaultdict
from matplotlib.colors import LinearSegmentedColormap

def make_default_md():
    leaderboard_md = f"""
# πŸ”ŽπŸ“šπŸͺ‘πŸ“šβ“ BABILong Leaderboard πŸ†

[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg.svg)](https://huggingface.co/datasets/booydar/babilong)

| [GitHub](https://github.com/booydar/babilong) | [Paper](https://arxiv.org/abs/2406.10149) | [HF Dataset](https://huggingface.co/datasets/booydar/babilong) | [HF Dataset 1k samples per task](https://huggingface.co/datasets/RMT-team/babilong-1k-samples) |
"""
    return leaderboard_md

def make_arena_leaderboard_md(total_models):
    leaderboard_md = f"""Total #models: **{total_models}**. Last updated: July 29, 2024."""
    return leaderboard_md

def make_model_desc_md(f_len):
    desc_md = make_arena_leaderboard_md(f_len)
    models = next(os.walk('info'))[2]
    for model in models:
        model_name = model.split('.md')[0]
        with open(os.path.join('info', model), 'r') as f:
            description = f.read()
        desc_md += f"\n\n### {model_name}\n{description}"
    return desc_md

def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

def load_model(folders, tab_name, msg_lengths):
    results = defaultdict(list)

    class NA():
        def __repr__(self) -> str:
            return '-'
        def __float__(self):
            return 0.0
       
    mean_score = []

    for i, folder in enumerate(folders):
        model_name = folder.split('/')[-1]
        if 'fine-tune' in model_name:
            model_name += ' πŸ› οΈ'
        if 'rag' in model_name.lower() or 'retrieve' in model_name.lower():
            model_name += ' πŸ”Ž'
        results['Model'].append(model_name)
        for task in msg_lengths:
            if not os.path.isfile(f'{folder}/{tab_name}/{task}.csv'):
                results[msg_lengths[task]].append(NA())
            else:
                df = pd.read_csv(f'{folder}/{tab_name}/{task}.csv')
                results[msg_lengths[task]].append(int(df['result'].sum() / len(df) * 100))

        mean_score.append(-np.mean([float(results[msg_lengths[task]][i]) for task in list(msg_lengths.keys())[:10]]))

    res_df = pd.DataFrame(results)
    lengths = list(msg_lengths.values())
    res_df['mean_score'] = mean_score
    res_df['num_lengths'] = -(res_df[lengths].astype(float) > 0).sum(axis=1)
    res_df = res_df[res_df.num_lengths != 0]
    res_df.sort_values(['num_lengths', 'mean_score'], inplace=True)
    res_df['Rank'] = range(1, res_df.shape[0] + 1)

    res_df['Avg ≀32k'] = res_df[lengths[:5]].astype(float).fillna(0).mean(axis=1).astype(int)
    res_df['Avg ≀128k'] = res_df[lengths[:7]].astype(float).fillna(0).mean(axis=1).astype(int)
    ordered_columns = ['Rank', 'Model', 'Avg ≀32k', 'Avg ≀128k'] + lengths
    res_df = res_df[ordered_columns]
    return res_df
    
def build_leaderboard_tab(folders):
    default_md = make_default_md()
    md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
    msg_lengths = {
        '0': '0k', 
        '4000': '4k', 
        '8000': '8k', 
        '16000': '16k', 
        '32000': '32k', 
        '64000': '64k', 
        '128000': '128k', 
        '500000': '500k', 
        '1000000': '1M', 
        '10000000': '10M'
    }

    with gr.Tabs() as tabs:
        for tab_id, tab_name in enumerate(['avg', 'qa1','qa2', 'qa3', 'qa4', 'qa5']):
                df = load_model(folders, tab_name, msg_lengths)
                cmap = LinearSegmentedColormap.from_list('ryg', ["red", "yellow", "green"], N=256)

                # df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=list(msg_lengths.values()))
                df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=df.columns[2:])
                # arena table
                with gr.Tab(tab_name, id=tab_id):
                    md = make_arena_leaderboard_md(len(folders))
                    gr.Markdown(md, elem_id="leaderboard_markdown")
                    gr.Dataframe(
                        headers=[
                            "Rank",
                            "Model",
                        ] + list(msg_lengths.values()) + ['Avg ≀32k', 'Avg ≀128k'],
                        datatype=[
                            "str",
                            "markdown",
                            "str",
                            "str",
                            "str",
                            "str",
                            "str",
                            "str",
                            "str",
                            "str",
                            "str",
                        ],
                        value=df,
                        elem_id="arena_leaderboard_dataframe",
                        height=700,
                        column_widths=[20, 150] + [30] * 2 + [20] * len(msg_lengths),
                        wrap=True,
                    )

        with gr.Tab("Description", id=tab_id + 1):
            desc_md = make_model_desc_md(len(folders))
            gr.Markdown(desc_md, elem_id="leaderboard_markdown")

    return [md_1]

block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
footer {
    display:none !important
}
.image-container {
    display: flex;
    align-items: center;
    padding: 1px;
}
.image-container img {
    margin: 0 30px;
    height: 20px;
    max-height: 100%;
    width: auto;
    max-width: 20%;
}
"""

def build_demo(folders):
    text_size = gr.themes.sizes.text_lg

    with gr.Blocks(
        title="Babilong leaderboard",
        theme=gr.themes.Base(text_size=text_size),
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(folders)
    return demo


if __name__ == "__main__":
    folders = [f'results/{folders}' for folders in os.listdir('results')]
    demo = build_demo(folders)
    demo.launch(share=False)