Spaces:
Running
Running
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" | |
# import ast | |
# import argparse | |
# import glob | |
# import pickle | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import os | |
from collections import defaultdict | |
from matplotlib.colors import LinearSegmentedColormap | |
def make_default_md(): | |
leaderboard_md = f""" | |
# πππͺ‘πβ BABILong Leaderboard π | |
[![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg.svg)](https://huggingface.co/datasets/booydar/babilong) | |
| [GitHub](https://github.com/booydar/babilong) | [Paper](https://arxiv.org/abs/2406.10149) | [HF Dataset](https://huggingface.co/datasets/booydar/babilong) | [HF Dataset 1k samples per task](https://huggingface.co/datasets/RMT-team/babilong-1k-samples) | | |
""" | |
return leaderboard_md | |
def make_arena_leaderboard_md(total_models): | |
leaderboard_md = f"""Total #models: **{total_models}**. Last updated: July 29, 2024.""" | |
return leaderboard_md | |
def make_model_desc_md(f_len): | |
desc_md = make_arena_leaderboard_md(f_len) | |
models = next(os.walk('info'))[2] | |
for model in models: | |
model_name = model.split('.md')[0] | |
with open(os.path.join('info', model), 'r') as f: | |
description = f.read() | |
desc_md += f"\n\n### {model_name}\n{description}" | |
return desc_md | |
def model_hyperlink(model_name, link): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def load_model(folders, tab_name, msg_lengths): | |
results = defaultdict(list) | |
class NA(): | |
def __repr__(self) -> str: | |
return '-' | |
def __float__(self): | |
return 0.0 | |
mean_score = [] | |
for i, folder in enumerate(folders): | |
model_name = folder.split('/')[-1] | |
if 'fine-tune' in model_name: | |
model_name += ' π οΈ' | |
if 'rag' in model_name.lower() or 'retrieve' in model_name.lower(): | |
model_name += ' π' | |
results['Model'].append(model_name) | |
for task in msg_lengths: | |
if not os.path.isfile(f'{folder}/{tab_name}/{task}.csv'): | |
results[msg_lengths[task]].append(NA()) | |
else: | |
df = pd.read_csv(f'{folder}/{tab_name}/{task}.csv') | |
results[msg_lengths[task]].append(int(df['result'].sum() / len(df) * 100)) | |
mean_score.append(-np.mean([float(results[msg_lengths[task]][i]) for task in list(msg_lengths.keys())[:10]])) | |
res_df = pd.DataFrame(results) | |
lengths = list(msg_lengths.values()) | |
res_df['mean_score'] = mean_score | |
res_df['num_lengths'] = -(res_df[lengths].astype(float) > 0).sum(axis=1) | |
res_df = res_df[res_df.num_lengths != 0] | |
res_df.sort_values(['num_lengths', 'mean_score'], inplace=True) | |
res_df['Rank'] = range(1, res_df.shape[0] + 1) | |
res_df['Avg β€32k'] = res_df[lengths[:5]].astype(float).fillna(0).mean(axis=1).astype(int) | |
res_df['Avg β€128k'] = res_df[lengths[:7]].astype(float).fillna(0).mean(axis=1).astype(int) | |
ordered_columns = ['Rank', 'Model', 'Avg β€32k', 'Avg β€128k'] + lengths | |
res_df = res_df[ordered_columns] | |
return res_df | |
def build_leaderboard_tab(folders): | |
default_md = make_default_md() | |
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") | |
msg_lengths = { | |
'0': '0k', | |
'4000': '4k', | |
'8000': '8k', | |
'16000': '16k', | |
'32000': '32k', | |
'64000': '64k', | |
'128000': '128k', | |
'500000': '500k', | |
'1000000': '1M', | |
'10000000': '10M' | |
} | |
with gr.Tabs() as tabs: | |
for tab_id, tab_name in enumerate(['avg', 'qa1','qa2', 'qa3', 'qa4', 'qa5']): | |
df = load_model(folders, tab_name, msg_lengths) | |
cmap = LinearSegmentedColormap.from_list('ryg', ["red", "yellow", "green"], N=256) | |
# df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=list(msg_lengths.values())) | |
df = df.style.background_gradient(cmap=cmap, vmin=0, vmax=100, subset=df.columns[2:]) | |
# arena table | |
with gr.Tab(tab_name, id=tab_id): | |
md = make_arena_leaderboard_md(len(folders)) | |
gr.Markdown(md, elem_id="leaderboard_markdown") | |
gr.Dataframe( | |
headers=[ | |
"Rank", | |
"Model", | |
] + list(msg_lengths.values()) + ['Avg β€32k', 'Avg β€128k'], | |
datatype=[ | |
"str", | |
"markdown", | |
"str", | |
"str", | |
"str", | |
"str", | |
"str", | |
"str", | |
"str", | |
"str", | |
"str", | |
], | |
value=df, | |
elem_id="arena_leaderboard_dataframe", | |
height=700, | |
column_widths=[20, 150] + [30] * 2 + [20] * len(msg_lengths), | |
wrap=True, | |
) | |
with gr.Tab("Description", id=tab_id + 1): | |
desc_md = make_model_desc_md(len(folders)) | |
gr.Markdown(desc_md, elem_id="leaderboard_markdown") | |
return [md_1] | |
block_css = """ | |
#notice_markdown { | |
font-size: 104% | |
} | |
#notice_markdown th { | |
display: none; | |
} | |
#notice_markdown td { | |
padding-top: 6px; | |
padding-bottom: 6px; | |
} | |
#leaderboard_markdown { | |
font-size: 104% | |
} | |
#leaderboard_markdown td { | |
padding-top: 6px; | |
padding-bottom: 6px; | |
} | |
#leaderboard_dataframe td { | |
line-height: 0.1em; | |
} | |
footer { | |
display:none !important | |
} | |
.image-container { | |
display: flex; | |
align-items: center; | |
padding: 1px; | |
} | |
.image-container img { | |
margin: 0 30px; | |
height: 20px; | |
max-height: 100%; | |
width: auto; | |
max-width: 20%; | |
} | |
""" | |
def build_demo(folders): | |
text_size = gr.themes.sizes.text_lg | |
with gr.Blocks( | |
title="Babilong leaderboard", | |
theme=gr.themes.Base(text_size=text_size), | |
css=block_css, | |
) as demo: | |
leader_components = build_leaderboard_tab(folders) | |
return demo | |
if __name__ == "__main__": | |
folders = [f'results/{folders}' for folders in os.listdir('results')] | |
demo = build_demo(folders) | |
demo.launch(share=False) | |