Spaces:
Build error
Build error
import time | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from config import FPS | |
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3): | |
sns.set_theme() | |
x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])] | |
x = [i/FPS for j in x for i in j] | |
y = [i/FPS for i in I] | |
# Create figure and dataframe to plot with sns | |
fig = plt.figure() | |
# plt.tight_layout() | |
df = pd.DataFrame(zip(x, y), columns = ['X', 'Y']) | |
g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE) | |
# Set x-labels to be more readable | |
x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks | |
x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs] | |
plt.xticks(x_locs, x_labels) | |
plt.xticks(rotation=90) | |
plt.xlabel('Time in source video (H:M:S)') | |
plt.xlim(0, None) | |
# Set y-labels to be more readable | |
y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks | |
y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs] | |
plt.yticks(y_locs, y_labels) | |
plt.ylabel('Time in target video (H:M:S)') | |
# Adjust padding to fit gradio | |
plt.subplots_adjust(bottom=0.25, left=0.20) | |
return fig | |
def plot_multi_comparison(df, change_points): | |
""" From the dataframe plot the current set of plots, where the bottom right is most indicative """ | |
fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True) | |
sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0,0]) | |
sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1]) | |
sns.scatterplot(data = df, x='time', y='OFFSET', ax=ax_arr[1,0]) | |
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,1]) | |
# Plot change point as lines | |
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[2,1]) | |
for x in change_points: | |
cp_time = x.start_time | |
plt.vlines(x=cp_time, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='red', lw=2) | |
rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None) | |
plt.text(x=cp_time, y=rand_y_pos, s=str(np.round(x.confidence, 2)), color='r', rotation=-0.0, fontsize=14) | |
plt.xticks(rotation=90) | |
return fig |