|
import gradio as gr |
|
from unsloth import FastLanguageModel |
|
from transformers import AutoTokenizer, TextStreamer |
|
|
|
|
|
model_name = "Rafay17/Llama3.2_1b_customModel2" |
|
model, tokenizer = FastLanguageModel.from_pretrained(model_name) |
|
FastLanguageModel.for_inference(model) |
|
|
|
|
|
def generate_response(message, history, max_tokens, temperature, top_p): |
|
|
|
labeled_prompt = f"User Input: {message}\nResponse:" |
|
|
|
|
|
inputs = tokenizer( |
|
[labeled_prompt], |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512, |
|
).to("cuda") |
|
|
|
|
|
text_streamer = TextStreamer(tokenizer, skip_prompt=True) |
|
response = "" |
|
for token in model.generate( |
|
input_ids=inputs.input_ids, |
|
attention_mask=inputs.attention_mask, |
|
streamer=text_streamer, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=tokenizer.eos_token_id, |
|
): |
|
response += token |
|
|
|
return response |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter your message here..."), |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=512, value=64, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top-p (nucleus sampling)"), |
|
], |
|
outputs=gr.Textbox(label="Chatbot Response"), |
|
live=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|