Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,76 @@
|
|
1 |
-
import numpy as np
|
2 |
import gradio as gr
|
3 |
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
datagen = ImageDataGenerator(
|
9 |
rotation_range=40,
|
10 |
width_shift_range=0.2,
|
11 |
height_shift_range=0.2,
|
12 |
-
shear_range=0.2,
|
13 |
zoom_range=0.2,
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
img = img.resize((256, 256)) # Resize image
|
21 |
-
x = img_to_array(img)
|
22 |
-
x = x.reshape((1,) + x.shape)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
if len(augmented_images) >= 5: # Generate 5 augmented samples
|
29 |
-
break
|
30 |
|
31 |
-
return
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
|
3 |
from PIL import Image
|
4 |
+
import os
|
5 |
+
import zipfile
|
6 |
|
7 |
+
# Define where augmented images will be temporarily stored
|
8 |
+
TEMP_DIR = "temp_augmented_images"
|
9 |
+
|
10 |
+
# Ensure the temp directory exists
|
11 |
+
if not os.path.exists(TEMP_DIR):
|
12 |
+
os.makedirs(TEMP_DIR)
|
13 |
+
|
14 |
+
# Image Augmentation Function
|
15 |
+
def augment_image(image_file, datagen, num_duplicates):
|
16 |
+
try:
|
17 |
+
img = Image.open(image_file).convert('RGB') # Convert to RGB
|
18 |
+
img = img.resize((256, 256)) # Resize for consistency
|
19 |
+
x = img_to_array(img) # Image to array
|
20 |
+
x = x.reshape((1,) + x.shape) # Reshape for data generator
|
21 |
+
|
22 |
+
# Augment image
|
23 |
+
i = 0
|
24 |
+
for batch in datagen.flow(x, batch_size=1, save_to_dir=TEMP_DIR, save_prefix="aug", save_format="jpeg"):
|
25 |
+
i += 1
|
26 |
+
if i >= num_duplicates:
|
27 |
+
break
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error in augmenting image: {e}")
|
30 |
+
|
31 |
+
def create_zip_from_temp(directory=TEMP_DIR):
|
32 |
+
zip_path = f"{directory}/augmented_images.zip"
|
33 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
34 |
+
for root, _, files in os.walk(directory):
|
35 |
+
for file in files:
|
36 |
+
if file.endswith(".jpeg"): # Ensure only augmented images are added
|
37 |
+
zipf.write(os.path.join(root, file), arcname=file)
|
38 |
+
return zip_path
|
39 |
+
|
40 |
+
def process_images(images, num_duplicates):
|
41 |
+
# Data generator for augmentation
|
42 |
datagen = ImageDataGenerator(
|
43 |
rotation_range=40,
|
44 |
width_shift_range=0.2,
|
45 |
height_shift_range=0.2,
|
|
|
46 |
zoom_range=0.2,
|
47 |
+
fill_mode='nearest')
|
48 |
+
|
49 |
+
# Process each uploaded image
|
50 |
+
for image_file in images:
|
51 |
+
augment_image(image_file, datagen, num_duplicates)
|
52 |
|
53 |
+
# Create a zip file with all augmented images
|
54 |
+
zip_file = create_zip_from_temp()
|
|
|
|
|
|
|
55 |
|
56 |
+
# Clean up augmented images to avoid clutter
|
57 |
+
for file in os.listdir(TEMP_DIR):
|
58 |
+
if file.endswith(".jpeg"): # Clean up only augmented images, not the zip
|
59 |
+
os.remove(os.path.join(TEMP_DIR, file))
|
|
|
|
|
60 |
|
61 |
+
return zip_file
|
62 |
+
|
63 |
+
# Gradio Interface
|
64 |
+
demo = gr.Interface(
|
65 |
+
fn=process_images,
|
66 |
+
inputs=[
|
67 |
+
gr.Files(type="file", label="Upload Images", accept=["image/jpeg", "image/png"], multiple=True),
|
68 |
+
gr.Slider(minimum=1, maximum=20, default=5, label="Number of Duplicates per Image")
|
69 |
+
],
|
70 |
+
outputs=gr.File(label="Download Augmented Images"),
|
71 |
+
title="Image Augmentation App",
|
72 |
+
description="Upload images to augment them with random transformations. Download the augmented images as a zip file."
|
73 |
)
|
74 |
|
75 |
+
if __name__ == "__main__":
|
76 |
+
demo.launch()
|