Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,15 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from tensorflow.keras.preprocessing.image import img_to_array, ImageDataGenerator
|
3 |
-
from PIL import Image
|
4 |
-
import os
|
5 |
-
import zipfile
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
x = img_to_array(img) # Image to array
|
20 |
-
x = x.reshape((1,) + x.shape) # Reshape for data generator
|
21 |
-
|
22 |
-
# Augment image
|
23 |
-
i = 0
|
24 |
-
for batch in datagen.flow(x, batch_size=1, save_to_dir=TEMP_DIR, save_prefix="aug", save_format="jpeg"):
|
25 |
-
i += 1
|
26 |
-
if i >= num_duplicates:
|
27 |
-
break
|
28 |
-
except Exception as e:
|
29 |
-
print(f"Error in augmenting image: {e}")
|
30 |
-
|
31 |
-
def create_zip_from_temp(directory=TEMP_DIR):
|
32 |
-
zip_path = f"{directory}/augmented_images.zip"
|
33 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
34 |
-
for root, _, files in os.walk(directory):
|
35 |
-
for file in files:
|
36 |
-
if file.endswith(".jpeg"): # Ensure only augmented images are added
|
37 |
-
zipf.write(os.path.join(root, file), arcname=file)
|
38 |
-
return zip_path
|
39 |
-
|
40 |
-
def process_images(images, num_duplicates):
|
41 |
-
# Data generator for augmentation
|
42 |
-
datagen = ImageDataGenerator(
|
43 |
-
rotation_range=40,
|
44 |
-
width_shift_range=0.2,
|
45 |
-
height_shift_range=0.2,
|
46 |
-
zoom_range=0.2,
|
47 |
-
fill_mode='nearest')
|
48 |
-
|
49 |
-
# Process each uploaded image
|
50 |
-
for image_file in images:
|
51 |
-
augment_image(image_file, datagen, num_duplicates)
|
52 |
-
|
53 |
-
# Create a zip file with all augmented images
|
54 |
-
zip_file = create_zip_from_temp()
|
55 |
-
|
56 |
-
# Clean up augmented images to avoid clutter
|
57 |
-
for file in os.listdir(TEMP_DIR):
|
58 |
-
if file.endswith(".jpeg"): # Clean up only augmented images, not the zip
|
59 |
-
os.remove(os.path.join(TEMP_DIR, file))
|
60 |
-
|
61 |
-
return zip_file
|
62 |
-
|
63 |
-
# Gradio Interface
|
64 |
-
demo = gr.Interface(
|
65 |
-
fn=process_images,
|
66 |
-
inputs=[
|
67 |
-
gr.Files(type="file", label="Upload Images", accept=["image/jpeg", "image/png"], multiple=True),
|
68 |
-
gr.Slider(minimum=1, maximum=20, default=5, label="Number of Duplicates per Image")
|
69 |
-
],
|
70 |
-
outputs=gr.File(label="Download Augmented Images"),
|
71 |
-
title="Image Augmentation App",
|
72 |
-
description="Upload images to augment them with random transformations. Download the augmented images as a zip file."
|
73 |
-
)
|
74 |
-
|
75 |
-
if __name__ == "__main__":
|
76 |
-
demo.launch()
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
def sepia(input_img):
|
5 |
+
sepia_filter = np.array([
|
6 |
+
[0.393, 0.769, 0.189],
|
7 |
+
[0.349, 0.686, 0.168],
|
8 |
+
[0.272, 0.534, 0.131]
|
9 |
+
])
|
10 |
+
sepia_img = input_img.dot(sepia_filter.T)
|
11 |
+
sepia_img /= sepia_img.max()
|
12 |
+
return sepia_img
|
13 |
+
|
14 |
+
demo = gr.Interface(sepia, gr.Image(), "image")
|
15 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|