Spaces:
Runtime error
Runtime error
Create agents/product_manager_agent.py
Browse files
agents/product_manager_agent.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
from langchain_core.messages import AIMessage
|
4 |
+
|
5 |
+
MODEL_REPO = "Rahul-8799/product_manager_mistral"
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO, trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
MODEL_REPO,
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
|
14 |
+
def run(state: dict) -> dict:
|
15 |
+
"""Generates structured product requirements from user input prompt."""
|
16 |
+
messages = state["messages"]
|
17 |
+
prompt = messages[-1].content
|
18 |
+
|
19 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
20 |
+
output_ids = model.generate(input_ids, max_new_tokens=3000)
|
21 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
return {
|
24 |
+
"messages": [AIMessage(content=output)],
|
25 |
+
"chat_log": state["chat_log"] + [{"role": "Product Manager", "content": output}],
|
26 |
+
"pm_output": output,
|
27 |
+
}
|