Rajadhurai commited on
Commit
e876d5a
·
verified ·
1 Parent(s): 5054ee4

this code is good but output not coming in huggingface

Browse files
Files changed (1) hide show
  1. app.py +60 -39
app.py CHANGED
@@ -2,9 +2,11 @@ import cv2
2
  import mediapipe as mp
3
  import numpy as np
4
  import gradio as gr
 
5
 
6
- # MediaPipe setup
7
  MODEL_PATH = "hand_landmarker.task"
 
8
  BaseOptions = mp.tasks.BaseOptions
9
  HandLandmarker = mp.tasks.vision.HandLandmarker
10
  HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
@@ -44,42 +46,61 @@ def get_finger_color(start_idx):
44
  else:
45
  return FINGER_COLORS['palm']
46
 
47
- # Load model only once
48
- options = HandLandmarkerOptions(
49
- base_options=BaseOptions(model_asset_path=MODEL_PATH),
50
- running_mode=VisionRunningMode.IMAGE,
51
- num_hands=2,
52
- min_hand_detection_confidence=0.5,
53
- min_hand_presence_confidence=0.5,
54
- min_tracking_confidence=0.5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  )
56
- landmarker = HandLandmarker.create_from_options(options)
57
-
58
- # Main processing function
59
- def detect_hand(frame):
60
- rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
61
- mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
62
- results = landmarker.detect(mp_img)
63
-
64
- h, w, _ = frame.shape
65
- if results.hand_landmarks:
66
- for hand_landmarks in results.hand_landmarks:
67
- points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
68
-
69
- for start, end in HAND_CONNECTIONS:
70
- color = get_finger_color(start)
71
- cv2.line(frame, points[start], points[end], color, 2)
72
-
73
- for (x, y) in points:
74
- cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
75
-
76
- return frame
77
-
78
- # Gradio UI
79
- gr.Interface(
80
- fn=detect_hand,
81
- inputs=gr.Image(source="webcam", streaming=True, label="Webcam Input"),
82
- outputs=gr.Image(label="Annotated Frame"),
83
- title="Real-time Hand Detection with MediaPipe",
84
- live=True
85
- ).launch()
 
2
  import mediapipe as mp
3
  import numpy as np
4
  import gradio as gr
5
+ import tempfile
6
 
7
+ # Load model
8
  MODEL_PATH = "hand_landmarker.task"
9
+
10
  BaseOptions = mp.tasks.BaseOptions
11
  HandLandmarker = mp.tasks.vision.HandLandmarker
12
  HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
 
46
  else:
47
  return FINGER_COLORS['palm']
48
 
49
+ def process_video(video_path):
50
+ cap = cv2.VideoCapture(video_path)
51
+
52
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
53
+ tmp_out = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
54
+ out_path = tmp_out.name
55
+
56
+ fps = cap.get(cv2.CAP_PROP_FPS)
57
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
58
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
59
+ out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
60
+
61
+ options = HandLandmarkerOptions(
62
+ base_options=BaseOptions(model_asset_path=MODEL_PATH),
63
+ running_mode=VisionRunningMode.IMAGE,
64
+ num_hands=2,
65
+ min_hand_detection_confidence=0.5,
66
+ min_hand_presence_confidence=0.5,
67
+ min_tracking_confidence=0.5
68
+ )
69
+
70
+ with HandLandmarker.create_from_options(options) as landmarker:
71
+ while cap.isOpened():
72
+ ret, frame = cap.read()
73
+ if not ret:
74
+ break
75
+
76
+ rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
77
+ mp_img = mp_image(image_format=mp_format.SRGB, data=rgb_frame)
78
+ results = landmarker.detect(mp_img)
79
+
80
+ if results.hand_landmarks:
81
+ for hand_landmarks in results.hand_landmarks:
82
+ points = [(int(lm.x * w), int(lm.y * h)) for lm in hand_landmarks]
83
+
84
+ for start, end in HAND_CONNECTIONS:
85
+ color = get_finger_color(start)
86
+ cv2.line(frame, points[start], points[end], color, 2)
87
+
88
+ for i, (x, y) in enumerate(points):
89
+ cv2.circle(frame, (x, y), 4, (0, 255, 255), -1)
90
+
91
+ out.write(frame)
92
+
93
+ cap.release()
94
+ out.release()
95
+ return out_path
96
+
97
+ # Gradio interface
98
+ demo = gr.Interface(
99
+ fn=process_video,
100
+ inputs=gr.Video(label="Upload Video or Use Webcam"),
101
+ outputs=gr.Video(label="Hand Landmark Annotated Video"),
102
+ title="Hand Detection ",
103
+ description="Upload a video or use webcam to detect hands."
104
  )
105
+
106
+ demo.launch()