|
""" |
|
Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan multimodal /invoke format. |
|
|
|
Why separate file? Make it easy to see how transformation works |
|
|
|
Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html |
|
""" |
|
|
|
from typing import List |
|
|
|
from litellm.types.llms.bedrock import ( |
|
AmazonTitanMultimodalEmbeddingConfig, |
|
AmazonTitanMultimodalEmbeddingRequest, |
|
AmazonTitanMultimodalEmbeddingResponse, |
|
) |
|
from litellm.types.utils import Embedding, EmbeddingResponse, Usage |
|
from litellm.utils import get_base64_str, is_base64_encoded |
|
|
|
|
|
class AmazonTitanMultimodalEmbeddingG1Config: |
|
""" |
|
Reference - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-mm.html |
|
""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def get_supported_openai_params(self) -> List[str]: |
|
return ["dimensions"] |
|
|
|
def map_openai_params( |
|
self, non_default_params: dict, optional_params: dict |
|
) -> dict: |
|
for k, v in non_default_params.items(): |
|
if k == "dimensions": |
|
optional_params["embeddingConfig"] = ( |
|
AmazonTitanMultimodalEmbeddingConfig(outputEmbeddingLength=v) |
|
) |
|
return optional_params |
|
|
|
def _transform_request( |
|
self, input: str, inference_params: dict |
|
) -> AmazonTitanMultimodalEmbeddingRequest: |
|
|
|
is_encoded = is_base64_encoded(input) |
|
if is_encoded: |
|
b64_str = get_base64_str(input) |
|
transformed_request = AmazonTitanMultimodalEmbeddingRequest( |
|
inputImage=b64_str |
|
) |
|
else: |
|
transformed_request = AmazonTitanMultimodalEmbeddingRequest(inputText=input) |
|
|
|
for k, v in inference_params.items(): |
|
transformed_request[k] = v |
|
return transformed_request |
|
|
|
def _transform_response( |
|
self, response_list: List[dict], model: str |
|
) -> EmbeddingResponse: |
|
|
|
total_prompt_tokens = 0 |
|
transformed_responses: List[Embedding] = [] |
|
for index, response in enumerate(response_list): |
|
_parsed_response = AmazonTitanMultimodalEmbeddingResponse(**response) |
|
transformed_responses.append( |
|
Embedding( |
|
embedding=_parsed_response["embedding"], |
|
index=index, |
|
object="embedding", |
|
) |
|
) |
|
total_prompt_tokens += _parsed_response["inputTextTokenCount"] |
|
|
|
usage = Usage( |
|
prompt_tokens=total_prompt_tokens, |
|
completion_tokens=0, |
|
total_tokens=total_prompt_tokens, |
|
) |
|
return EmbeddingResponse(model=model, usage=usage, data=transformed_responses) |
|
|