|
import json |
|
from copy import deepcopy |
|
from typing import Callable, Optional, Union |
|
|
|
import httpx |
|
|
|
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM |
|
from litellm.utils import ModelResponse, get_secret |
|
|
|
from ..common_utils import AWSEventStreamDecoder |
|
from .transformation import SagemakerChatConfig |
|
|
|
|
|
class SagemakerChatHandler(BaseAWSLLM): |
|
|
|
def _load_credentials( |
|
self, |
|
optional_params: dict, |
|
): |
|
try: |
|
from botocore.credentials import Credentials |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) |
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None) |
|
aws_session_token = optional_params.pop("aws_session_token", None) |
|
aws_region_name = optional_params.pop("aws_region_name", None) |
|
aws_role_name = optional_params.pop("aws_role_name", None) |
|
aws_session_name = optional_params.pop("aws_session_name", None) |
|
aws_profile_name = optional_params.pop("aws_profile_name", None) |
|
optional_params.pop( |
|
"aws_bedrock_runtime_endpoint", None |
|
) |
|
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None) |
|
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None) |
|
|
|
|
|
if aws_region_name is None: |
|
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None) |
|
|
|
if litellm_aws_region_name is not None and isinstance( |
|
litellm_aws_region_name, str |
|
): |
|
aws_region_name = litellm_aws_region_name |
|
|
|
standard_aws_region_name = get_secret("AWS_REGION", None) |
|
if standard_aws_region_name is not None and isinstance( |
|
standard_aws_region_name, str |
|
): |
|
aws_region_name = standard_aws_region_name |
|
|
|
if aws_region_name is None: |
|
aws_region_name = "us-west-2" |
|
|
|
credentials: Credentials = self.get_credentials( |
|
aws_access_key_id=aws_access_key_id, |
|
aws_secret_access_key=aws_secret_access_key, |
|
aws_session_token=aws_session_token, |
|
aws_region_name=aws_region_name, |
|
aws_session_name=aws_session_name, |
|
aws_profile_name=aws_profile_name, |
|
aws_role_name=aws_role_name, |
|
aws_web_identity_token=aws_web_identity_token, |
|
aws_sts_endpoint=aws_sts_endpoint, |
|
) |
|
return credentials, aws_region_name |
|
|
|
def _prepare_request( |
|
self, |
|
credentials, |
|
model: str, |
|
data: dict, |
|
optional_params: dict, |
|
aws_region_name: str, |
|
extra_headers: Optional[dict] = None, |
|
): |
|
try: |
|
from botocore.auth import SigV4Auth |
|
from botocore.awsrequest import AWSRequest |
|
except ImportError: |
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.") |
|
|
|
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name) |
|
if optional_params.get("stream") is True: |
|
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream" |
|
else: |
|
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations" |
|
|
|
sagemaker_base_url = optional_params.get("sagemaker_base_url", None) |
|
if sagemaker_base_url is not None: |
|
api_base = sagemaker_base_url |
|
|
|
encoded_data = json.dumps(data).encode("utf-8") |
|
headers = {"Content-Type": "application/json"} |
|
if extra_headers is not None: |
|
headers = {"Content-Type": "application/json", **extra_headers} |
|
request = AWSRequest( |
|
method="POST", url=api_base, data=encoded_data, headers=headers |
|
) |
|
sigv4.add_auth(request) |
|
if ( |
|
extra_headers is not None and "Authorization" in extra_headers |
|
): |
|
request.headers["Authorization"] = extra_headers["Authorization"] |
|
|
|
prepped_request = request.prepare() |
|
|
|
return prepped_request |
|
|
|
def completion( |
|
self, |
|
model: str, |
|
messages: list, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
logging_obj, |
|
optional_params: dict, |
|
litellm_params: dict, |
|
timeout: Optional[Union[float, httpx.Timeout]] = None, |
|
custom_prompt_dict={}, |
|
logger_fn=None, |
|
acompletion: bool = False, |
|
headers: dict = {}, |
|
): |
|
|
|
|
|
credentials, aws_region_name = self._load_credentials(optional_params) |
|
inference_params = deepcopy(optional_params) |
|
stream = inference_params.pop("stream", None) |
|
|
|
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler |
|
|
|
openai_like_chat_completions = OpenAILikeChatHandler() |
|
inference_params["stream"] = True if stream is True else False |
|
_data = SagemakerChatConfig().transform_request( |
|
model=model, |
|
messages=messages, |
|
optional_params=inference_params, |
|
litellm_params=litellm_params, |
|
headers=headers, |
|
) |
|
|
|
prepared_request = self._prepare_request( |
|
model=model, |
|
data=_data, |
|
optional_params=optional_params, |
|
credentials=credentials, |
|
aws_region_name=aws_region_name, |
|
) |
|
|
|
custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True) |
|
|
|
return openai_like_chat_completions.completion( |
|
model=model, |
|
messages=messages, |
|
api_base=prepared_request.url, |
|
api_key=None, |
|
custom_prompt_dict=custom_prompt_dict, |
|
model_response=model_response, |
|
print_verbose=print_verbose, |
|
logging_obj=logging_obj, |
|
optional_params=inference_params, |
|
acompletion=acompletion, |
|
litellm_params=litellm_params, |
|
logger_fn=logger_fn, |
|
timeout=timeout, |
|
encoding=encoding, |
|
headers=prepared_request.headers, |
|
custom_endpoint=True, |
|
custom_llm_provider="sagemaker_chat", |
|
streaming_decoder=custom_stream_decoder, |
|
) |
|
|