Spaces:
Running
Running
File size: 3,586 Bytes
894a0e9 eee0e91 4136b14 894a0e9 54e2701 4136b14 eee0e91 894a0e9 54e2701 eee0e91 54e2701 eee0e91 894a0e9 eee0e91 4136b14 eee0e91 894a0e9 eee0e91 894a0e9 54e2701 eee0e91 894a0e9 eee0e91 894a0e9 eee0e91 894a0e9 eee0e91 54e2701 eee0e91 894a0e9 eee0e91 894a0e9 eee0e91 894a0e9 eee0e91 894a0e9 54e2701 eee0e91 54e2701 eee0e91 894a0e9 eee0e91 4136b14 eee0e91 894a0e9 b97f088 e1a79d7 eee0e91 894a0e9 76b98e2 eee0e91 894a0e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import cv2
import torch
from PIL import Image, ImageDraw
import gradio as gr
import pandas as pd
from transformers import pipeline
# تحميل النموذج
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
translator = pipeline("translation_en_to_ar", model="Helsinki-NLP/opus-mt-en-ar")
# دالة لاكتشاف الكائنات في الصور
def detect_and_draw_image(input_image):
results = model(input_image)
detections = results.xyxy[0].numpy()
draw = ImageDraw.Draw(input_image)
counts = {}
for detection in detections:
xmin, ymin, xmax, ymax, conf, class_id = detection
label = model.names[int(class_id)]
counts[label] = counts.get(label, 0) + 1
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=2)
draw.text((xmin, ymin), f"{label}: {conf:.2f}", fill="white")
translated_labels = translator(list(counts.keys()))
df = pd.DataFrame({
'Label (English)': list(counts.keys()),
'Label (Arabic)': [t['translation_text'] for t in translated_labels],
'Object Count': list(counts.values())
})
return input_image, df
# دالة لاكتشاف الكائنات في الفيديو
def detect_and_draw_video(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
overall_counts = {}
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (640, 480))
results = model(frame)
detections = results.xyxy[0].numpy()
for detection in detections:
xmin, ymin, xmax, ymax, conf, class_id = detection
label = model.names[int(class_id)]
overall_counts[label] = overall_counts.get(label, 0) + 1
cv2.rectangle(frame, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 0, 0), 2)
cv2.putText(frame, f"{label}: {conf:.2f}", (int(xmin), int(ymin) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
frames.append(frame)
cap.release()
output_path = 'output.mp4'
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 20.0, (640, 480))
for frame in frames:
out.write(frame)
out.release()
translated_labels = translator(list(overall_counts.keys()))
df = pd.DataFrame({
'Label (English)': list(overall_counts.keys()),
'Label (Arabic)': [t['translation_text'] for t in translated_labels],
'Object Count': list(overall_counts.values())
})
return output_path, df
# واجهة صورة
image_interface = gr.Interface(
fn=detect_and_draw_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=[gr.Image(type="pil"), gr.Dataframe(label="Object Counts")],
title="Object Detection for Images",
description="Upload an image to see the objects detected and their counts.",
examples=['assets/MessiVsAlhilal.jpg', 'assets/Manhattan002_0.webp'] # إضافة الأمثلة هنا
)
video_interface = gr.Interface(
fn=detect_and_draw_video,
inputs=gr.Video(label="Upload Video"),
outputs=[gr.Video(label="Processed Video"), gr.Dataframe(label="Object Counts")],
title="Object Detection for Videos",
description="Upload a video to see the objects detected and their counts.",
examples=['assetsV/Untitled.mp4', 'assetsV/Untitled1.mp4'] # إضافة الأمثلة هنا
)
app = gr.TabbedInterface([image_interface, video_interface], ["Image Detection", "Video Detection"])
app.launch(debug=True)
|