Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from deep_translator import GoogleTranslator | |
from PIL import Image | |
import requests | |
import io | |
import time | |
from groq import Groq | |
import torch | |
os.environ['hugging'] | |
H_key = os.getenv('hugging') | |
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2" | |
headers = {"Authorization": f"Bearer {H_key}"} | |
os.environ['groq'] | |
api_key = os.getenv('groq') | |
client = Groq(api_key=api_key) | |
def query_image_generation(payload, max_retries=5): | |
for attempt in range(max_retries): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 503: | |
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}") | |
estimated_time = min(response.json().get("estimated_time", 60), 60) | |
time.sleep(estimated_time) | |
continue | |
if response.status_code != 200: | |
print(f"Error: Received status code {response.status_code}") | |
print(f"Response: {response.text}") | |
return None | |
return response.content | |
print(f"Failed to generate image after {max_retries} attempts.") | |
return None | |
def generate_image(prompt): | |
image_bytes = query_image_generation({"inputs": prompt}) | |
if image_bytes is None: | |
return None | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes | |
return image | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
def process_audio_or_text(input_text, audio_path, generate_image_flag): | |
tamil_text, translation, image = None, None, None | |
if audio_path: # Prefer audio input | |
try: | |
with open(audio_path, "rb") as file: | |
transcription = client.audio.transcriptions.create( | |
file=(os.path.basename(audio_path), file.read()), | |
model="whisper-large-v3", | |
language="ta", | |
response_format="verbose_json", | |
) | |
tamil_text = transcription.text | |
except Exception as e: | |
return f"An error occurred during transcription: {str(e)}", None, None | |
try: | |
translator = GoogleTranslator(source='ta', target='en') | |
translation = translator.translate(tamil_text) | |
except Exception as e: | |
return tamil_text, f"An error occurred during translation: {str(e)}", None | |
elif input_text: # No audio input, so use text input | |
try: | |
translator = GoogleTranslator(source='ta', target='en') | |
translation = translator.translate(input_text) | |
except Exception as e: | |
return tamil_text, f"An error occurred during translation: {str(e)}", None | |
# translation = input_text | |
# Generate chatbot response | |
try: | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": translation}], | |
model="llama-3.2-3b-preview" | |
) | |
chatbot_response = chat_completion.choices[0].message.content | |
except Exception as e: | |
return None, f"An error occurred during chatbot interaction: {str(e)}", None | |
if generate_image_flag: # Generate image if the checkbox is checked | |
image = generate_image(translation) | |
return translation, chatbot_response, image # Return both chatbot response and image (if generated) | |
# Custom CSS for improved styling and centered title | |
css = """ | |
.gradio-container { | |
font-family: 'Georgia', serif; | |
background-color: #f5f5f5; | |
padding: 20px; | |
color: #000000; | |
} | |
.gr-row { | |
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1); | |
background-color: #ffffff; | |
border-radius: 10px; | |
padding: 20px; | |
margin: 10px 0; | |
} | |
.gr-button { | |
background-color: #8b4513; | |
color: white; | |
font-size: 16px; | |
border-radius: 5px; | |
} | |
.gr-button:hover { | |
background-color: #6a3511; | |
} | |
.gr-checkbox-label { | |
font-weight: bold; | |
} | |
.gr-image { | |
border-radius: 10px; | |
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1); | |
} | |
#main-title { | |
text-align: center; | |
font-size: 28px; | |
font-weight: bold; | |
color: #8b4513; | |
} | |
""" | |
with gr.Blocks(css=css) as iface: | |
gr.Markdown("<h1 id='main-title'>🖼️ AI Chatbot and Image Generation App</h1>") | |
with gr.Row(): | |
with gr.Column(scale=1): # Left side (Inputs and Buttons) | |
user_input = gr.Textbox(label="Enter Tamil or English text", placeholder="Type your message here...") | |
audio_input = gr.Audio(type="filepath", label="Or upload audio (for Image Generation)") | |
image_generation_checkbox = gr.Checkbox(label="Generate Image", value=True) | |
# Buttons | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.Button("Clear") | |
with gr.Column(scale=1): # Right side (Outputs) | |
text_output_1 = gr.Textbox(label="English Transcription", interactive=False) | |
text_output_2 = gr.Textbox(label="Chatbot Response", interactive=False) | |
image_output = gr.Image(label="Generated Image") | |
# Connect the buttons to the functions | |
submit_btn.click(fn=process_audio_or_text, | |
inputs=[user_input, audio_input, image_generation_checkbox], | |
outputs=[text_output_1, text_output_2, image_output]) | |
clear_btn.click(lambda: ("", None, False, "", "", None), | |
inputs=[], | |
outputs=[user_input, audio_input, image_generation_checkbox, text_output_1, text_output_2, image_output]) | |
iface.launch() | |