File size: 1,302 Bytes
ba710bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908c9f
8b21bb5
ba710bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
#Create Named Entity Recognition Pipeline
nerp = pipeline("ner", model=model, tokenizer=tokenizer)
#Build the Named Entity Recognition App
import gradio as gr
#Import Merging Tokens function from Helper to Display Output Relevant for User
from helper import merge_tokens
#Define Named Entity Recognition Function 
def ner(input):
    output = nerp(input)
    merged_tokens = merge_tokens(output)
    return {"text": input, "entities": merged_tokens}
#Set up the User Interface and Launch    
nerapp = gr.Interface(fn=ner,
                    inputs=[gr.Textbox(label="Text to find entities", lines=2)],
                    outputs=[gr.HighlightedText(label="Text with entities")],
                    title="NER with dslim/bert-base-NER",
                    description="Find entities using the `dslim/bert-base-NER` ",
                    allow_flagging="never",
                    examples=["My name is Sam, I'm building AI Apps and I live in Chennai", "My name is Lilly, I live in Chennai and work at Levitate"])
                 
nerapp.launch()