Spaces:
Running
Running
# -*- encoding: utf-8 -*- | |
# @Author: SWHL | |
# @Contact: [email protected] | |
from enum import Enum | |
from pathlib import Path | |
from typing import List, Union | |
import gradio as gr | |
import numpy as np | |
from rapidocr import RapidOCR | |
class InferEngine(Enum): | |
ort = "ONNXRuntime" | |
vino = "OpenVino" | |
paddle = "PaddlePaddle" | |
torch = "PyTorch" | |
def get_ocr_engine(infer_engine: str, lang_det: str, lang_rec: str) -> RapidOCR: | |
engine_mapping = { | |
InferEngine.vino.value: "with_openvino", | |
InferEngine.paddle.value: "with_paddle", | |
InferEngine.torch.value: "with_torch", | |
} | |
param_key = engine_mapping.get(infer_engine, "with_onnx") | |
return RapidOCR( | |
params={ | |
f"Global.{param_key}": True, | |
"Global.lang_det": lang_det, | |
"Global.lang_rec": lang_rec, | |
} | |
) | |
def get_ocr_result( | |
img: np.ndarray, | |
text_score, | |
box_thresh, | |
unclip_ratio, | |
lang_det, | |
lang_rec, | |
infer_engine, | |
is_word: str, | |
): | |
return_word_box = True if is_word == "Yes" else False | |
ocr_engine = get_ocr_engine(infer_engine, lang_det=lang_det, lang_rec=lang_rec) | |
ocr_result = ocr_engine( | |
img, | |
text_score=text_score, | |
box_thresh=box_thresh, | |
unclip_ratio=unclip_ratio, | |
return_word_box=return_word_box, | |
) | |
vis_img = ocr_result.vis() | |
if return_word_box: | |
txts, scores, _ = list(zip(*ocr_result.word_results)) | |
ocr_txts = [[i, txt, score] for i, (txt, score) in enumerate(zip(txts, scores))] | |
return vis_img, ocr_txts, ocr_result.elapse | |
ocr_txts = [ | |
[i, txt, score] | |
for i, (txt, score) in enumerate(zip(ocr_result.txts, ocr_result.scores)) | |
] | |
return vis_img, ocr_txts, ocr_result.elapse | |
def create_examples() -> List[List[Union[str, float]]]: | |
DEFAULT_VALUES = [0.5, 0.5, 1.6, "ch_mobile", "ch_mobile", "ONNXRuntime", "No"] | |
image_specs = [ | |
("images/ch_en_num.jpg", {}), | |
("images/japan.jpg", {3: "multi_mobile", 4: "japan_mobile"}), | |
("images/korean.jpg", {3: "multi_mobile", 4: "korean_mobile"}), | |
("images/air_ticket.jpg", {}), | |
("images/car_plate.jpeg", {}), | |
("images/train_ticket.jpeg", {}), | |
] | |
examples = [] | |
for image_path, overrides in image_specs: | |
example = DEFAULT_VALUES.copy() | |
example.insert(0, image_path) | |
for index, value in overrides.items(): | |
example[index + 1] = value | |
examples.append(example) | |
return examples | |
infer_engine_list = [InferEngine[v].value for v in InferEngine.__members__] | |
lang_det_list = ["ch_mobile", "ch_server", "en_mobile", "en_server", "multi_mobile"] | |
lang_rec_list = [ | |
"ch_mobile", | |
"ch_server", | |
"chinese_cht", | |
"en_mobile", | |
"ar_mobile", | |
"cyrillic_mobile", | |
"devanagari_mobile", | |
"japan_mobile", | |
"ka_mobile", | |
"korean_mobile", | |
"latin_mobile", | |
"ta_mobile", | |
"te_mobile", | |
] | |
custom_css = """ | |
body {font-family: body {font-family: 'Helvetica Neue', Helvetica;} | |
.gr-button {background-color: #4CAF50; color: white; border: none; padding: 10px 20px; border-radius: 5px;} | |
.gr-button:hover {background-color: #45a049;} | |
.gr-textbox {margin-bottom: 15px;} | |
.example-button {background-color: #1E90FF; color: white; border: none; padding: 8px 15px; border-radius: 5px; margin: 5px;} | |
.example-button:hover {background-color: #FF4500;} | |
.tall-radio .gr-radio-item {padding: 15px 0; min-height: 50px; display: flex; align-items: center;} | |
.tall-radio label {font-size: 16px;} | |
.output-image, .input-image, .image-preview {height: 300px !important} | |
""" | |
with gr.Blocks( | |
title="Rapid⚡OCR Demo", css="custom_css", theme=gr.themes.Soft() | |
) as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center;font-size:40px'>Rapid⚡OCR</h1> | |
<div style="display: flex; justify-content: center; gap: 10px;"> | |
<a href=""><img src="https://img.shields.io/badge/Python->=3.6-aff.svg"></a> | |
<a href="https://rapidai.github.io/RapidOCRDocs"><img src="https://img.shields.io/badge/Docs-link-aff.svg"></a> | |
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-pink.svg"></a> | |
<a href="https://pepy.tech/project/rapidocr"><img src="https://static.pepy.tech/personalized-badge/rapidocr?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20rapidocr"></a> | |
<a href="https://pypi.org/project/rapidocr/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rapidocr"></a> | |
<a href="https://github.com/RapidAI/RapidOCR"><img src="https://img.shields.io/github/stars/RapidAI/RapidOCR?color=ccf"></a> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
text_score = gr.Slider( | |
label="text_score", | |
minimum=0, | |
maximum=1.0, | |
value=0.5, | |
step=0.1, | |
info="文本识别结果是正确的置信度,值越大,显示出的识别结果更准确。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5", | |
) | |
box_thresh = gr.Slider( | |
label="box_thresh", | |
minimum=0, | |
maximum=1.0, | |
value=0.5, | |
step=0.1, | |
info="检测到的框是文本的概率,值越大,框中是文本的概率就越大。存在漏检时,调低该值。取值范围:[0, 1.0],默认值为0.5", | |
) | |
unclip_ratio = gr.Slider( | |
label="unclip_ratio", | |
minimum=1.5, | |
maximum=2.0, | |
value=1.6, | |
step=0.1, | |
info="控制文本检测框的大小,值越大,检测框整体越大。在出现框截断文字的情况,调大该值。取值范围:[1.5, 2.0],默认值为1.6", | |
) | |
with gr.Row(): | |
select_infer_engine = gr.Dropdown( | |
choices=infer_engine_list, | |
label="Infer Engine (推理引擎)", | |
value="ONNXRuntime", | |
interactive=True, | |
) | |
lang_det = gr.Dropdown( | |
choices=lang_det_list, | |
label="Det model (文本检测模型)", | |
value=lang_det_list[0], | |
interactive=True, | |
) | |
lang_rec = gr.Dropdown( | |
choices=lang_rec_list, | |
label="Rec model (文本识别模型)", | |
value=lang_rec_list[0], | |
interactive=True, | |
) | |
is_word = gr.Radio( | |
["Yes", "No"], label="Return word box (返回单字符)", value="No" | |
) | |
img_input = gr.Image(label="Upload or Select Image", sources="upload") | |
run_btn = gr.Button("Run") | |
img_output = gr.Image(label="Output Image") | |
elapse = gr.Textbox(label="Elapse(s)") | |
ocr_results = gr.Dataframe( | |
label="OCR Txts", | |
headers=["Index", "Txt", "Score"], | |
datatype=["number", "str", "number"], | |
show_copy_button=True, | |
) | |
ocr_inputs = [ | |
img_input, | |
text_score, | |
box_thresh, | |
unclip_ratio, | |
lang_det, | |
lang_rec, | |
select_infer_engine, | |
is_word, | |
] | |
run_btn.click( | |
get_ocr_result, inputs=ocr_inputs, outputs=[img_output, ocr_results, elapse] | |
) | |
examples = gr.Examples( | |
examples=create_examples(), | |
examples_per_page=5, | |
inputs=ocr_inputs, | |
fn=get_ocr_result, | |
outputs=[img_output, ocr_results, elapse], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |