Update app.py
Browse files
app.py
CHANGED
@@ -23,78 +23,27 @@ import tempfile
|
|
23 |
|
24 |
# return sanskrit_text, audio_path
|
25 |
# Load model and tokenizer
|
26 |
-
import os
|
27 |
-
import sys
|
28 |
-
import transformers
|
29 |
-
import tensorflow as tf
|
30 |
-
from datasets import load_dataset
|
31 |
-
from transformers import AutoTokenizer
|
32 |
-
from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
|
33 |
-
from transformers import AdamWeightDecay
|
34 |
-
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
35 |
|
36 |
-
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
37 |
|
38 |
-
from datasets import load_dataset
|
39 |
|
40 |
-
raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")
|
41 |
|
42 |
-
import torch
|
43 |
-
from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
|
44 |
-
from datasets import load_dataset
|
45 |
|
46 |
# Load the pre-trained English to Hindi model
|
47 |
-
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
48 |
-
model = MarianMTModel.from_pretrained(model_checkpoint)
|
49 |
-
tokenizer = MarianTokenizer.from_pretrained(model_checkpoint)
|
50 |
-
|
51 |
-
# Inspect the raw_datasets structure
|
52 |
-
print(raw_datasets)
|
53 |
-
print(raw_datasets['train'][0]) # Print the first example from the training set
|
54 |
-
|
55 |
-
# Tokenization function
|
56 |
-
def tokenize_function(examples):
|
57 |
-
# Extract English and Sanskrit translations
|
58 |
-
english_sentences = [item['en'] for item in examples['translation']]
|
59 |
-
sanskrit_sentences = [item['sn'] for item in examples['translation']]
|
60 |
-
|
61 |
-
# Tokenize the English inputs
|
62 |
-
model_inputs = tokenizer(
|
63 |
-
english_sentences,
|
64 |
-
padding="max_length",
|
65 |
-
truncation=True,
|
66 |
-
max_length=128
|
67 |
-
)
|
68 |
-
|
69 |
-
# Tokenize the Sanskrit labels
|
70 |
-
with tokenizer.as_target_tokenizer():
|
71 |
-
labels = tokenizer(
|
72 |
-
sanskrit_sentences,
|
73 |
-
padding="max_length",
|
74 |
-
truncation=True,
|
75 |
-
max_length=128
|
76 |
-
)
|
77 |
-
|
78 |
-
# Add labels to the model inputs
|
79 |
-
model_inputs["labels"] = labels["input_ids"]
|
80 |
-
return model_inputs
|
81 |
-
|
82 |
-
tokenizer = AutoTokenizer.from_pretrained(get_model_name())
|
83 |
-
|
84 |
-
model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
|
85 |
-
# I dont know wheter this will be of use or not
|
86 |
-
|
87 |
-
tokenized_train = raw_datasets['train'].map(tokenize_function, batched=True)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
tokenized_validation = raw_datasets['validation'].map(tokenize_function, batched=True)
|
92 |
-
|
93 |
-
from transformers import AutoModelForSeq2SeqLM # Instead of TFAutoModel...
|
94 |
-
|
95 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
96 |
-
|
97 |
-
|
98 |
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM
|
99 |
|
100 |
# # Load appropriate model based on phase
|
@@ -259,28 +208,6 @@ model___name = "SweUmaVarsh/m2m100-en-sa-translation"
|
|
259 |
# shuffle=False,
|
260 |
# batch_size=8,
|
261 |
# collate_fn=data_collator,
|
262 |
-
# )
|
263 |
-
|
264 |
-
# from transformers import create_optimizer
|
265 |
-
|
266 |
-
# steps_per_epoch = len(train_dataset)
|
267 |
-
# num_train_steps = steps_per_epoch * 1 # 1 epoch in your case
|
268 |
-
# num_warmup_steps = int(0.1 * num_train_steps) # 10% warmup
|
269 |
-
|
270 |
-
# optimizer, _ = create_optimizer(
|
271 |
-
# init_lr=2e-5,
|
272 |
-
# num_train_steps=num_train_steps,
|
273 |
-
# num_warmup_steps=num_warmup_steps,
|
274 |
-
# weight_decay_rate=0.01
|
275 |
-
# )
|
276 |
-
|
277 |
-
# model.compile(optimizer=optimizer)
|
278 |
-
# model.fit(train_dataset, validation_data=val_dataset, epochs=1)
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
|
285 |
model____name="Rask6723/IT_GR7_En-Sn"
|
286 |
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
|
|
|
23 |
|
24 |
# return sanskrit_text, audio_path
|
25 |
# Load model and tokenizer
|
26 |
+
# import os
|
27 |
+
# import sys
|
28 |
+
# import transformers
|
29 |
+
# import tensorflow as tf
|
30 |
+
# from datasets import load_dataset
|
31 |
+
# from transformers import AutoTokenizer
|
32 |
+
# from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
|
33 |
+
# from transformers import AdamWeightDecay
|
34 |
+
# from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
35 |
|
36 |
+
# model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
|
37 |
|
38 |
+
# from datasets import load_dataset
|
39 |
|
40 |
+
# raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")
|
41 |
|
42 |
+
# import torch
|
43 |
+
# from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
|
44 |
+
# from datasets import load_dataset
|
45 |
|
46 |
# Load the pre-trained English to Hindi model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM
|
48 |
|
49 |
# # Load appropriate model based on phase
|
|
|
208 |
# shuffle=False,
|
209 |
# batch_size=8,
|
210 |
# collate_fn=data_collator,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
model____name="Rask6723/IT_GR7_En-Sn"
|
213 |
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
|