Rathapoom's picture
Update app.py
472a67b verified
raw
history blame
7.96 kB
import streamlit as st
import pandas as pd
import plotly.graph_objs as go
# Step 1: Load the cleaned sheet based on the selected site
def load_clean_bmd_data(file_path, site):
sheet_name = ''
if site == 'Total Hip':
sheet_name = 'Clean TH avg rise BMD'
elif site == 'Femoral Neck':
sheet_name = 'clean FN avg rise BMD'
elif site == 'Lumbar Spine (L1-L4)':
sheet_name = 'clean LS avg rise BMD'
df_clean_bmd_data = pd.read_excel(file_path, sheet_name=sheet_name)
# Select relevant columns: Drug names and BMD percentage increases
df_cleaned = df_clean_bmd_data[['Unnamed: 0', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']]
# Rename the first column to 'Drug'
df_cleaned.columns = ['Drug', '1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
# Remove any rows with missing drug names
df_cleaned = df_cleaned.dropna(subset=['Drug'])
return df_cleaned
# Step 2: Adjust constants based on patient's BMD and T-score
def adjust_constants(bmd_patient, tscore_patient, c_avg, c_sd):
# Adjust C_avg and C_sd based on patient's BMD and T-score
error = tscore_patient - (bmd_patient - c_avg) / c_sd
c_avg_new = c_avg + error * c_sd
c_sd_new = (bmd_patient - c_avg) / tscore_patient
return c_avg_new, c_sd_new
# Step 3: Calculate BMD increase after medication (corrected version)
def calculate_bmd_increase(baseline_bmd, percentage_increase):
return baseline_bmd * (1 + percentage_increase)
# Step 4: Create a table showing BMD prediction and T-score conversion for each year for each drug
def create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, tscore_patient, c_avg_new, c_sd_new):
years = ['1st', '2nd', '3rd', '4th', '5th', '6th', '8th', '10th']
drug_tables = {}
# Loop through each selected drug and generate the prediction table
for drug in selected_drugs:
predictions = [('0', bmd_patient, tscore_patient)] # Add initial value (Year 0)
for year in years:
if not pd.isna(df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]):
percent_increase = df_bmd_data.loc[df_bmd_data['Drug'] == drug, year].values[0]
bmd_new = calculate_bmd_increase(bmd_patient, percent_increase) # Use baseline BMD
tscore_new = calculate_tscore_from_bmd(bmd_new, c_avg_new, c_sd_new) # Calculate predicted T-score
predictions.append((year, bmd_new, tscore_new))
# Create DataFrame for each drug
drug_table = pd.DataFrame(predictions, columns=['Year', 'Predicted BMD', 'Predicted T-score'])
drug_tables[drug] = drug_table
return drug_tables
# Step 5: Plot BMD and T-score as separate graphs side by side for each drug
def display_prediction_tables_and_plots(prediction_tables, baseline_bmd, baseline_tscore):
# Loop through each drug's prediction table
for drug, table in prediction_tables.items():
st.write(f"### {drug} Results")
# Display the prediction table for the current drug
st.dataframe(table)
# Create and display separate plots for each drug
years = list(table['Year'])
bmd_values = list(table['Predicted BMD'])
tscore_values = list(table['Predicted T-score'])
# Create BMD plot
trace_bmd = go.Scatter(x=years, y=bmd_values, mode='lines+markers', name=f'{drug} (BMD)', line=dict(color='blue'))
fig_bmd = go.Figure(data=[trace_bmd], layout=go.Layout(title=f'{drug} - Predicted BMD over Time', xaxis=dict(title='Years'), yaxis=dict(title='BMD (g/cm²)')))
# Create T-score plot
trace_tscore = go.Scatter(x=years, y=tscore_values, mode='lines+markers', name=f'{drug} (T-score)', line=dict(color='green'))
fig_tscore = go.Figure(data=[trace_tscore], layout=go.Layout(title=f'{drug} - Predicted T-score over Time', xaxis=dict(title='Years'), yaxis=dict(title='T-score')))
# Display the plots
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(fig_bmd)
with col2:
st.plotly_chart(fig_tscore)
# Step 6: Check if goal is achieved and show the predicted BMD and T-score for each year
goal_achieved = False
for i, row in table.iterrows():
if row['Predicted T-score'] >= -2.49:
st.success(f"Goal achieved for {drug} at year {row['Year']} with T-score = {row['Predicted T-score']:.2f}")
goal_achieved = True
break
if not goal_achieved:
st.warning(f"Goal not achieved for {drug}")
# Step 6: Calculate T-score from adjusted BMD
def calculate_tscore_from_bmd(bmd_patient, c_avg, c_sd):
return (bmd_patient - c_avg) / c_sd
# Main function to load data, run the application, and plot results with T-score labels
def main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site):
# Step 1: Load and clean BMD data from the selected site (Total Hip, Femoral Neck, Lumbar Spine)
df_bmd_data = load_clean_bmd_data(file_path, site)
# Step 2: Adjust constants based on the patient's data
c_avg_new, c_sd_new = adjust_constants(bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar)
# Step 4: Create separate prediction tables for each selected drug
prediction_tables = create_bmd_and_tscore_prediction_tables(df_bmd_data, selected_drugs, bmd_patient, tscore_patient, c_avg_new, c_sd_new)
# Display baseline BMD and T-score
st.write(f"Baseline: BMD = {bmd_patient:.3f}, T-score = {tscore_patient:.2f}")
# Step 5: Display prediction tables and plots for each drug
display_prediction_tables_and_plots(prediction_tables, bmd_patient, tscore_patient)
# Streamlit UI
def main():
st.title("BMD and T-score Prediction Tool")
# Input patient data
bmd_patient = st.number_input("Initial BMD", min_value=0.0, max_value=2.0, value=0.635, step=0.001, format="%.3f")
tscore_patient = st.number_input("Initial T-score", min_value=-5.0, max_value=2.0, value=-2.5, step=0.01, format="%.2f")
# Site options (Total Hip, Femoral Neck, Lumbar Spine)
site_options = ['Total Hip', 'Femoral Neck', 'Lumbar Spine (L1-L4)']
site = st.selectbox("Select site", site_options)
# Drug options
drug_options = ['Teriparatide', 'Teriparatide + Denosumab', 'Denosumab', 'Denosumab + Teriparatide',
'Romosozumab', 'Romosozumab + Denosumab', 'Romosozumab + Alendronate',
'Romosozumab + Ibandronate', 'Romosozumab + Zoledronate', 'Alendronate',
'Risedronate', 'Ibandronate oral', 'Ibandronate IV (3mg)', 'Zoledronate']
# Add option to select multiple drugs
selected_drugs = st.multiselect("Select drugs to compare", drug_options)
# Set constants for each site
if site == 'Total Hip':
C_avg_lunar = 0.95 # Example: Average BMD for Total Hip from Excel (Lunar)
C_sd_lunar = 0.12
elif site == 'Femoral Neck':
C_avg_lunar = 0.905 # Example: Average BMD for Femoral Neck from Excel (Lunar)
C_sd_lunar = 0.116 # Example: SD for Femoral Neck (Lunar)
elif site == 'Lumbar Spine (L1-L4)':
C_avg_lunar = 1.097 # Example: Average BMD for Lumbar Spine (L1-L4) from Excel (Lunar)
C_sd_lunar = 0.128 # Example: SD for Lumbar Spine (L1-L4) (Lunar)
# Example file path
file_path = "BMD constant calculator.xlsx"
# ตรวจสอบว่ามีการเลือกยาแล้วหรือไม่
if len(selected_drugs) == 0:
st.warning("Please select at least one drug to compare.")
else:
# Run prediction and plot results
if st.button("Predict"):
main_with_separate_tables(file_path, bmd_patient, tscore_patient, C_avg_lunar, C_sd_lunar, selected_drugs, site)
if __name__ == "__main__":
main()