Rathapoom's picture
Update appbackup.py
20ec65f verified
#file_path = "cleaned_bmd_medication_data.xlsx"
import streamlit as st
import pandas as pd
import plotly.graph_objs as go
# Constants from linear regression
REGRESSION_CONSTANTS = {
'Femoral Neck': {
'Female': {'mu': 0.916852, 'sigma': 0.120754},
'Male': {'mu': 0.9687385325352573, 'sigma': 0.121870698023835}
},
'Total Hip': {
'Female': {'mu': 0.955439, 'sigma': 0.125406},
'Male': {'mu': 0.967924895046735, 'sigma': 0.13081439619361657}
},
'Lumbar spine (L1-L4)': {
'Female': {'mu': 1.131649, 'sigma': 0.139618},
'Male': {'mu': 1.1309707991669353, 'sigma': 0.1201836924980611}
}
}
# Load medication data
@st.cache_data
def load_medication_data():
file_path = "cleaned_bmd_medication_data.xlsx"
return pd.read_excel(file_path)
# Calculate predicted BMD after medication
def calculate_bmd(bmd, percentage_increase):
return bmd * (1 + percentage_increase)
# Convert BMD to T-score
def calculate_tscore(bmd, mu, sigma):
return (bmd - mu) / sigma
# Generate prediction table for all drugs
def generate_predictions(medication_data, site, bmd, mu, sigma):
site_data = medication_data[medication_data['Site'] == site]
all_results = []
for _, row in site_data.iterrows():
drug = row['Medication']
predictions = {
'Year': ['0'],
'Year Index': [0], # Numeric x-axis for plotting
'Predicted BMD': [round(bmd, 3)],
'Predicted T-score': [round(calculate_tscore(bmd, mu, sigma), 1)]
}
year_index = 1
for year in row.index[1:-1]: # Skip 'Medication' and 'Site' columns
if not pd.isna(row[year]):
percentage_increase = row[year]
predicted_bmd = bmd * (1 + percentage_increase)
predicted_tscore = calculate_tscore(predicted_bmd, mu, sigma)
predictions['Year'].append(year.replace(" Year", "")) # Simplify year label
predictions['Year Index'].append(year_index) # Numeric x-axis
predictions['Predicted BMD'].append(round(predicted_bmd, 3))
predictions['Predicted T-score'].append(round(predicted_tscore, 1))
year_index += 1
all_results.append({'Drug': drug, 'Predictions': predictions})
return all_results
# Display results as table and plots
def display_results(predictions, site):
st.subheader(f"Predictions for {site}")
for result in predictions:
drug = result['Drug']
predictions = result['Predictions']
# Display table
st.write(f"### {drug}")
st.dataframe(pd.DataFrame(predictions))
# Plot BMD and T-score using Year Index
bmd_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted BMD'], mode='lines+markers',
name='Predicted BMD', line=dict(color='blue')
)
tscore_plot = go.Scatter(
x=predictions['Year Index'], y=predictions['Predicted T-score'], mode='lines+markers',
name='Predicted T-score', line=dict(color='green')
)
# Combine plots in a single row
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(go.Figure(data=[bmd_plot], layout=go.Layout(
title=f"{drug} - Predicted BMD", xaxis_title="Year", yaxis_title="BMD (g/cm²)",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
with col2:
st.plotly_chart(go.Figure(data=[tscore_plot], layout=go.Layout(
title=f"{drug} - Predicted T-score", xaxis_title="Year", yaxis_title="T-score",
xaxis=dict(tickmode='array', tickvals=predictions['Year Index'], ticktext=predictions['Year'])
)))
# Generate summary of medications reaching the target T-score
def generate_goal_summary(predictions, target_tscore=-2.4):
def year_to_int(year):
# Convert "1st", "2nd", "3rd", etc., to numeric values
try:
return int(year.rstrip("stndrdth")) # Remove suffixes like "st", "nd", "rd", "th"
except ValueError:
return 0 # Default to 0 if year cannot be converted
goal_reached = []
for result in predictions:
drug = result['Drug']
predictions_data = result['Predictions']
for year, tscore in zip(predictions_data['Year'], predictions_data['Predicted T-score']):
if tscore >= target_tscore:
# Convert year to an integer using helper function
numeric_year = year_to_int(year)
goal_reached.append({'Medication': drug, 'Year': numeric_year})
break # Stop checking further years for this drug
# Sort by year to prioritize earlier achievement
goal_reached_sorted = sorted(goal_reached, key=lambda x: x['Year'])
return goal_reached_sorted
# Display summary of goal-reaching medications
def display_goal_summary(goal_summary):
st.subheader("Goal Treatment Summary (T-score ≥ -2.4)")
if not goal_summary:
st.info("No medications reach the target T-score.")
else:
summary_table = pd.DataFrame(goal_summary)
st.table(summary_table)
# Medication Selection with Collapsible Categories
def select_medications():
st.subheader("Select Medications to Display")
show_all = st.checkbox("Show All Medications", key="show_all")
selected_medications = []
if not show_all:
# Define categories and medications
categories = {
"Bisphosphonates": [
"Alendronate", "Risedronate", "Ibandronate oral",
"Zoledronate", "Ibandronate IV (3mg)"
],
"RANK Ligand Inhibitors": [
"Denosumab", "Denosumab + Teriparatide"
],
"Anabolic Agents": [
"Teriparatide", "Teriparatide + Denosumab"
],
"Sclerostin Inhibitors": [
"Romosozumab", "Romosozumab + Denosumab",
"Romosozumab + Alendronate", "Romosozumab + Ibandronate",
"Romosozumab + Zoledronate"
]
}
# Create collapsible sections
for category, medications in categories.items():
with st.expander(category):
for med in medications:
# Use a unique key for each checkbox
if st.checkbox(med, key=f"{category}_{med}"):
selected_medications.append(med)
else:
# Include all medications if "Show All" is selected
selected_medications = [
"Alendronate", "Risedronate", "Ibandronate oral",
"Zoledronate", "Ibandronate IV (3mg)", "Denosumab",
"Denosumab + Teriparatide", "Teriparatide",
"Teriparatide + Denosumab", "Romosozumab",
"Romosozumab + Denosumab", "Romosozumab + Alendronate",
"Romosozumab + Ibandronate", "Romosozumab + Zoledronate"
]
return selected_medications
# Streamlit UI
# Main function
def main():
st.title("BMD and T-score Prediction Tool")
# DEXA Machine Selection
dexa_machine = st.selectbox("DEXA Machine", ["LUNAR"])
# Gender Selection
gender = st.selectbox("Gender", ["Female", "Male"])
# Location (Site) Selection with Mapping
site_mapping = {
'Lumbar spine (L1-L4)': 'LS',
'Femoral Neck': 'FN',
'Total Hip': 'TH'
}
site_options = list(site_mapping.keys())
selected_site = st.selectbox("Select Region (Site)", site_options)
site = site_mapping[selected_site] # Map to the actual value in the dataset
# Input patient data
bmd_patient = st.number_input(
"Initial BMD",
min_value=0.000, max_value=2.000,
value=0.800, step=0.001,
format="%.3f"
)
# Medication Selection
selected_medications = select_medications() # Ensure this is only called once
# Load constants and medication data
medication_data = load_medication_data()
constants = REGRESSION_CONSTANTS[selected_site][gender]
# Generate and display predictions for selected medications
if st.button("Predict"):
all_predictions = generate_predictions(medication_data, site, bmd_patient, constants['mu'], constants['sigma'])
filtered_predictions = [pred for pred in all_predictions if pred['Drug'] in selected_medications]
if not filtered_predictions:
st.warning("No medications selected. Please select at least one medication or use the 'Show All' option.")
else:
# Generate and display goal treatment summary
goal_summary = generate_goal_summary(filtered_predictions, target_tscore=-2.4)
display_goal_summary(goal_summary)
# Display individual medication results
display_results(filtered_predictions, selected_site)
if __name__ == "__main__":
main()