Spaces:
Sleeping
Sleeping
File size: 9,256 Bytes
5925eac 69f9c41 5925eac 842fce5 dc5209b 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 dc5209b 5925eac 43817b3 8e89935 69f9c41 43817b3 dc5209b 43817b3 dc5209b 43817b3 dc5209b 69f9c41 dc5209b 69f9c41 dc5209b 69f9c41 dc5209b 69f9c41 dc5209b 69f9c41 dc5209b 69f9c41 5925eac dc5209b f169455 43817b3 69f9c41 dc5209b f169455 43817b3 dc5209b f169455 43817b3 dc5209b 5925eac dc5209b f169455 43817b3 69f9c41 5925eac 43817b3 5925eac 43817b3 f169455 69f9c41 43817b3 f169455 43817b3 c0d20a2 5925eac f169455 5925eac 43817b3 5925eac 43817b3 69f9c41 5925eac 43817b3 69f9c41 5925eac 69f9c41 dc5209b 43817b3 dc5209b 69f9c41 dc5209b f169455 5925eac 43817b3 5925eac 43817b3 dc5209b 5925eac f169455 5925eac c0d20a2 5925eac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
import os
import json
import traceback
from data_service import DataAssessmentService
from sheets_integration import SheetsLogger
from datetime import datetime
# Initialize services with error handling
try:
print("Initializing services...")
service = DataAssessmentService(api_key=os.environ.get("OPENAI_API_KEY"))
sheets_logger = SheetsLogger()
print("Services initialized successfully")
except Exception as e:
print(f"Error initializing services: {str(e)}")
print(traceback.format_exc())
raise
# Constants
DEPARTMENTS = {
"Executive Management": "Executive Administration",
"Education Support": "Education Support",
"Medicine": "Medicine",
"Cardiology": "Cardiology",
"Gastroenterology": "Gastroenterology",
"Medical Oncology": "Medical Oncology",
"Hematology": "Hematology",
"Operating Room": "Operating Room",
"Surgery": "Surgery",
"Orthopedics": "Orthopedics",
"Obstetrics and Gynecology": "Obstetrics and Gynecology",
"Ophthalmology": "Ophthalmology",
"Ear, Nose, and Throat": "ENT",
"Anesthesiology": "Anesthesiology",
"Emergency Medicine & EMS": "Emergency Medicine",
"Pediatrics": "Pediatrics",
"Family Medicine & Preventive Medicine": "Family Medicine",
"Psychiatry": "Psychiatry",
"Physical Medicine & Rehabilitation": "PM&R",
"Pathology": "Pathology",
"Radiology": "Radiology",
"Other": "Other"
}
FREQUENCIES = ["One-time request", "Weekly", "Monthly"]
URGENCY = ["Within a week", "Within a month", "Within a year"]
# Example requests for reference
EXAMPLE_REQUESTS = """
### Example 1: Clinical Data Request
I need OPD patient statistics for the Cardiology department from January to June 2024, including daily patient volume, types of cardiac conditions (ICD-10 codes), average waiting times, and number of follow-up vs. new cases. This data will be used for department capacity planning and resource allocation.
### Example 2: Quality Improvement Request
Requesting waiting time analysis for all OPD clinics for Q1 2024, including:
- Registration to first nurse contact time
- Nurse station to doctor examination time
- Doctor examination duration
- Time at pharmacy
- Total visit duration
Break down by day of week and time slots (morning/afternoon). This data will help identify service bottlenecks.
### Example 3: Department Performance Analysis
Need Emergency Department performance data for March 2024:
- Daily patient volume by triage level
- Door-to-doctor times
- Length of stay in ED
- Admission rates
- Transfer rates to other departments
Purpose: Monthly performance review and staff allocation planning.
"""
def process_request(name, employee_id, email, department, other_dept, request_details, frequency, urgency):
"""Process the data request and return both user and technical responses"""
print("=== Debug: Received Inputs ===")
print("\nProcessing new request:")
print(f"Name: {name}")
print(f"Employee ID: {employee_id}")
print(f"Email: {email}")
print(f"Department: {department}")
print(f"Other Dept: {other_dept}")
print(f"Request Details: {request_details}")
print(f"Frequency: {frequency}")
print(f"Urgency: {urgency}")
# Validate inputs
if not all([name, employee_id, email, request_details, department, frequency, urgency]):
print("Validation failed - missing required fields")
return "Please fill in all required fields.", None
try:
# Process the request through GPT
print("Calling GPT service...")
result = service.assess_request(request_details)
print(f"GPT service response received: {result}")
if "error" in result:
return f"Error analyzing request: {result['error']}", None
# Create user-friendly summary
user_summary = f"""
### Data Request Summary
**From:** {name} ({department})
**Request Type:** {frequency} | Urgency: {urgency}
**Analysis:**
{result.get('request_analysis', {}).get('interpretation', 'No interpretation available')}
**Data Availability:**
"""
# Add available reports
available = result.get('data_availability', {}).get('available_reports', [])
if available:
user_summary += "\nβ
**Available in Web Data:**\n"
for report in available:
user_summary += f"- {report['name']}\n"
user_summary += "\nEstimated processing time: 3 working days\n"
# Add data lake requirements
data_lake = result.get('data_lake_requirements', {}).get('reports_needed', [])
if data_lake:
user_summary += "\nπ **Requires Additional Database Query:**\n"
for report in data_lake:
user_summary += f"- {report['report_type']}\n"
user_summary += "\nEstimated processing time: 2 weeks\n"
# Add unavailable data
unavailable = result.get('unavailable_data', [])
if unavailable:
user_summary += "\nβ **Data Not Currently Available:**\n"
for item in unavailable:
user_summary += f"- {item['report_type']}\n"
user_summary += "\nRecommendation: Schedule a meeting to discuss alternatives\n"
# Log to sheets
print("Logging to Google Sheets...")
sheet_data = {
"name": name,
"employee_id": employee_id,
"email": email,
"department": other_dept if department == "Other" else department,
"request_details": request_details,
"frequency": frequency,
"urgency": urgency,
"user_summary": user_summary,
"system_analysis": json.dumps(result, ensure_ascii=False)
}
sheets_logger.log_request(sheet_data)
print("Request logged successfully")
return user_summary, result
except Exception as e:
error_msg = f"Error processing request: {str(e)}"
print(error_msg)
print(traceback.format_exc())
return error_msg, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Hospital Data Request System")
gr.Markdown("Please fill in the following information to request data access.")
with gr.Row():
with gr.Column():
name = gr.Textbox(
label="Full Name*",
placeholder="Enter your full name",
value=""
)
employee_id = gr.Textbox(
label="Employee ID*",
placeholder="Enter your employee ID",
value=""
)
email = gr.Textbox(
label="Email*",
placeholder="Enter your email for contact",
value=""
)
with gr.Row():
with gr.Column():
department = gr.Dropdown(
choices=list(DEPARTMENTS.keys()),
label="Department*",
info="Select your department",
value=list(DEPARTMENTS.keys())[0]
)
other_dept = gr.Textbox(
label="Other Department",
placeholder="Specify your department if not in the list",
visible=False,
value=""
)
# Handle department change
department.change(
fn=lambda x: gr.update(visible=(x == "Other")),
inputs=department,
outputs=other_dept
)
# Example requests section
with gr.Accordion("π Click here to see example requests", open=False):
gr.Markdown(EXAMPLE_REQUESTS)
with gr.Row():
request_details = gr.Textbox(
label="Request Details*",
placeholder="Please describe in detail what data you need, including time period, specific parameters, etc.",
lines=5,
value=""
)
with gr.Row():
with gr.Column():
frequency = gr.Dropdown(
choices=FREQUENCIES,
label="Request Frequency*",
value=FREQUENCIES[0]
)
urgency = gr.Dropdown(
choices=URGENCY,
label="Urgency Level*",
value=URGENCY[0]
)
# Submit button
submit_btn = gr.Button("Submit Request")
# Output sections
with gr.Row():
user_output = gr.Markdown(label="Request Summary")
with gr.Accordion("Technical Analysis (For Data Team)", open=False):
tech_output = gr.JSON()
# Connect the submit button to the process function
submit_btn.click(
fn=process_request,
inputs=[
name, employee_id, email, department, other_dept,
request_details, frequency, urgency
],
outputs=[user_output, tech_output]
)
gr.Markdown("""
### Notes:
- Fields marked with * are required
- Please provide detailed information about the data you need
- Include specific time periods and parameters
- Clearly state the purpose of your request
- All communications will be sent to the provided email
""")
if __name__ == "__main__":
demo.launch() |