Spaces:
Sleeping
Sleeping
File size: 8,892 Bytes
5925eac 69f9c41 5925eac 842fce5 dc5209b 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 5925eac 69f9c41 dc5209b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 24efe9b 8367b0e 5925eac 8e89935 24efe9b 43817b3 dc5209b 24efe9b 8367b0e 24efe9b dc5209b 8367b0e 43817b3 dc5209b 8367b0e 24efe9b 8367b0e 24efe9b dc5209b 8367b0e dc5209b 8367b0e dc5209b 69f9c41 24efe9b dc5209b 24efe9b 5925eac 8367b0e 5925eac dc5209b f169455 8367b0e dc5209b f169455 8367b0e dc5209b f169455 8367b0e dc5209b 8367b0e 5925eac dc5209b f169455 43817b3 8367b0e 5925eac 8367b0e 5925eac 8367b0e f169455 8367b0e 43817b3 8367b0e f169455 43817b3 c0d20a2 8367b0e 5925eac f169455 5925eac 8367b0e 5925eac 8367b0e 5925eac 8367b0e 5925eac 8367b0e 5925eac 8367b0e 5925eac 43817b3 dc5209b 5925eac 8367b0e 5925eac 8367b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import os
import json
import traceback
from data_service import DataAssessmentService
from sheets_integration import SheetsLogger
from datetime import datetime
# Initialize services with error handling
try:
print("Initializing services...")
service = DataAssessmentService(api_key=os.environ.get("OPENAI_API_KEY"))
sheets_logger = SheetsLogger()
print("Services initialized successfully")
except Exception as e:
print(f"Error initializing services: {str(e)}")
print(traceback.format_exc())
raise
# Constants
DEPARTMENTS = {
"Executive Management": "Executive Administration",
"Education Support": "Education Support",
"Medicine": "Medicine",
"Cardiology": "Cardiology",
"Gastroenterology": "Gastroenterology",
"Medical Oncology": "Medical Oncology",
"Hematology": "Hematology",
"Operating Room": "Operating Room",
"Surgery": "Surgery",
"Orthopedics": "Orthopedics",
"Obstetrics and Gynecology": "Obstetrics and Gynecology",
"Ophthalmology": "Ophthalmology",
"Ear, Nose, and Throat": "ENT",
"Anesthesiology": "Anesthesiology",
"Emergency Medicine & EMS": "Emergency Medicine",
"Pediatrics": "Pediatrics",
"Family Medicine & Preventive Medicine": "Family Medicine",
"Psychiatry": "Psychiatry",
"Physical Medicine & Rehabilitation": "PM&R",
"Pathology": "Pathology",
"Radiology": "Radiology",
"Other": "Other"
}
FREQUENCIES = ["One-time request", "Weekly", "Monthly"]
URGENCY = ["Within a week", "Within a month", "Within a year"]
# Example requests for reference
EXAMPLE_REQUESTS = """
### Example 1: Clinical Data Request
I need OPD patient statistics for the Cardiology department from January to June 2024, including daily patient volume, types of cardiac conditions (ICD-10 codes), average waiting times, and number of follow-up vs. new cases. This data will be used for department capacity planning and resource allocation.
### Example 2: Quality Improvement Request
Requesting waiting time analysis for all OPD clinics for Q1 2024, including:
- Registration to first nurse contact time
- Nurse station to doctor examination time
- Doctor examination duration
- Time at pharmacy
- Total visit duration
Break down by day of week and time slots (morning/afternoon). This data will help identify service bottlenecks.
### Example 3: Department Performance Analysis
Need Emergency Department performance data for March 2024:
- Daily patient volume by triage level
- Door-to-doctor times
- Length of stay in ED
- Admission rates
- Transfer rates to other departments
Purpose: Monthly performance review and staff allocation planning.
"""
# Function to format user-friendly summaries
def format_user_summary(analysis_result):
"""Format analysis result into user-friendly summary"""
available = [
report['report_type']
for report in analysis_result.get("required_reports", [])
if report['category'] == "OPD" # Example: assuming OPD reports are in Web Data System
]
data_lake = [
report['report_type']
for report in analysis_result.get("required_reports", [])
if report['category'] != "OPD" # Example: assuming other categories require Data Lake queries
]
unavailable = analysis_result.get("unavailable_data", [])
interpretation = analysis_result.get("interpretation", "No interpretation available.")
summary = [
"### Data Request Summary",
f"**Request Analysis**: \n{interpretation}\n",
"\n**Data Availability**:\n"
]
if available:
summary.append("β
**Available in Web Data System**: ")
for report in available:
summary.append(f"- {report}")
summary.append(f"\nEstimated processing time: **3 working days**\n")
if data_lake:
summary.append("π **Requires Additional Database Query**: ")
for report in data_lake:
summary.append(f"- {report}")
summary.append(f"\nEstimated processing time: **2β4 weeks**\n")
if unavailable:
summary.append("β **Not Currently Available**: ")
for item in unavailable:
summary.append(f"- {item}")
summary.append("\nAction required: Schedule a meeting to discuss alternative data sources or solutions. We will follow up via email.\n")
# Return formatted summary
return "\n".join(summary)
def process_request(name, employee_id, email, department, other_dept, request_details, frequency, urgency):
print("=== Debug: Received Inputs ===")
print(f"Name: {name}, Employee ID: {employee_id}, Email: {email}, Department: {department}, Request Details: {request_details}, Frequency: {frequency}, Urgency: {urgency}")
if not all([name, employee_id, email, request_details, department, frequency, urgency]):
return "Please fill in all required fields.", None
final_department = other_dept if department == "Other" else department
try:
# Analyze request
print("Calling GPT service...")
result = service.assess_request(request_details)
print(f"GPT response received: {result}")
# Format summary
user_summary = format_user_summary(result)
print(f"User Summary: {user_summary}")
# Log request
sheet_data = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"name": name,
"employee_id": employee_id,
"email": email,
"department": final_department,
"request_details": request_details,
"frequency": frequency,
"urgency": urgency,
"user_summary": user_summary,
"system_analysis": json.dumps(result, ensure_ascii=False)
}
sheets_logger.log_request(sheet_data)
return user_summary, result
except Exception as e:
return f"Error processing request: {str(e)}", None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Hospital Data Request System")
gr.Markdown("Please fill in the following information to request data access.")
with gr.Row():
with gr.Column():
name = gr.Textbox(
label="Full Name*",
placeholder="Enter your full name"
)
employee_id = gr.Textbox(
label="Employee ID*",
placeholder="Enter your employee ID"
)
email = gr.Textbox(
label="Email*",
placeholder="Enter your email for contact"
)
with gr.Row():
with gr.Column():
department = gr.Dropdown(
choices=list(DEPARTMENTS.keys()),
label="Department*",
info="Select your department",
value=list(DEPARTMENTS.keys())[0] # Set default value
)
other_dept = gr.Textbox(
label="Other Department",
placeholder="Specify your department if not in the list",
visible=False
)
def update_other_dept_visibility(dept):
return gr.update(visible=(dept == "Other"))
department.change(
fn=update_other_dept_visibility,
inputs=department,
outputs=other_dept
)
# Example requests section
with gr.Accordion("π Click here to see example requests", open=False):
gr.Markdown(EXAMPLE_REQUESTS)
with gr.Row():
request_details = gr.Textbox(
label="Request Details*",
placeholder="Please describe in detail what data you need, including time period, specific parameters, etc.",
lines=5
)
with gr.Row():
with gr.Column():
frequency = gr.Dropdown(
choices=FREQUENCIES,
label="Request Frequency*"
)
urgency = gr.Dropdown(
choices=URGENCY,
label="Urgency Level*"
)
submit_btn = gr.Button("Submit Request", variant="primary")
user_output = gr.Markdown("", label="Request Summary")
tech_output = gr.JSON(label="Technical Analysis (For Data Team)")
submit_btn.click(
fn=process_request,
inputs=[
name, employee_id, email, department, other_dept,
request_details, frequency, urgency
],
outputs=[user_output, tech_output]
)
gr.Markdown(
"""
### Notes:
- Fields marked with * are required
- Provide detailed information about the data you need
- Include specific time periods and parameters
- Clearly state the purpose of your request
- All communications will be sent to the provided email
"""
)
if __name__ == "__main__":
demo.launch()
|