File size: 10,802 Bytes
213f539
 
4c5cb00
6d71955
ad1a715
 
213f539
4c5cb00
 
 
 
ad1a715
4c5cb00
ad1a715
4c5cb00
ad1a715
 
 
4c5cb00
ad1a715
 
4c5cb00
ad1a715
 
 
213f539
ad1a715
 
 
4c5cb00
 
ad1a715
 
 
 
 
e3da1c7
4c5cb00
6d71955
 
58d3b83
 
 
 
 
 
 
 
 
6d71955
 
58d3b83
 
 
 
 
 
 
 
e3da1c7
4c5cb00
58d3b83
 
 
 
 
 
 
 
6d71955
 
58d3b83
 
 
 
 
 
 
 
 
 
6d71955
a9150c4
58d3b83
 
 
 
 
 
 
 
 
 
 
 
 
 
a9150c4
4c5cb00
a9150c4
58d3b83
 
 
 
 
 
 
 
 
 
 
 
a9150c4
58d3b83
e3da1c7
58d3b83
 
 
 
 
 
 
6d71955
 
 
 
4c5cb00
58d3b83
54ba6a8
58d3b83
54ba6a8
58d3b83
 
 
6d71955
102fc7c
4c5cb00
6d71955
58d3b83
6d71955
4c5cb00
6d71955
58d3b83
2c0669a
ad1a715
a417e3e
 
 
 
 
ad1a715
 
 
 
 
 
a417e3e
 
 
2c0669a
 
 
 
 
9f4a1d9
2c0669a
 
 
 
 
 
 
 
 
 
a9150c4
2c0669a
e3da1c7
2c0669a
 
 
6d71955
2c0669a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a241fb
2c0669a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import streamlit as st
import openai
from openai import OpenAI
import time
import gspread
from oauth2client.service_account import ServiceAccountCredentials

# Set up OpenAI client
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])

# Google Sheets setup remains the same
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("genexam-2c8c645ecc0d.json", scope)
client_gs = gspread.authorize(creds)
sheet = client_gs.open("GeneXam user").sheet1

def check_user_in_sheet(username):
    try:
        users_list = sheet.col_values(1)
        if username in users_list:
            return True
        return False
    except Exception as e:
        st.error(f"Error checking user: {str(e)}")
        return False

def update_api_usage(username):
    try:
        users_list = sheet.col_values(1)
        row_number = users_list.index(username) + 1
        api_usage = int(sheet.cell(row_number, 2).value)
        api_usage += 1
        sheet.update_cell(row_number, 2, api_usage)
    except Exception as e:
        st.error(f"Error updating API usage: {str(e)}")

def generate_questions_with_retry(knowledge_material, question_type, cognitive_level, extra_instructions, case_based, num_choices=None, max_retries=3):
    # Adjust number of questions based on type
    if question_type == "Multiple Choice":
        num_questions = 3
        format_instructions = f"""
        For each multiple choice question:
        1. Present the question clearly
        2. Provide {num_choices} choices labeled with A, B, C{', D' if num_choices > 3 else ''}{', E' if num_choices > 4 else ''}
        3. After all questions, provide an ANSWER KEY section with:
           - The correct answer letter for each question
           - A brief explanation of why this is the correct answer
           - Why other options are incorrect
        """
    elif question_type == "Fill in the Blank":
        num_questions = 10
        format_instructions = """
        For each fill-in-the-blank question:
        1. Present the question with a clear blank space indicated by _____
        2. After all questions, provide an ANSWER KEY section with:
           - The correct answer for each blank
           - A brief explanation of why this answer is correct
           - Any alternative acceptable answers if applicable
        """
    elif question_type == "True/False":
        num_questions = 5
        format_instructions = """
        For each true/false question:
        1. Present the statement clearly
        2. After all questions, provide an ANSWER KEY section with:
           - Whether the statement is True or False
           - A detailed explanation of why the statement is true or false
           - The specific part of the source material that supports this answer
        """
    else:  # Open-ended
        num_questions = 3
        format_instructions = """
        For each open-ended question:
        1. Present the question clearly
        2. After all questions, provide an ANSWER KEY section with:
           - A structured scoring checklist of key points (minimum 3-5 points per question)
           - Each key point should be worth a specific number of marks
           - Total marks available for each question
           - Sample answer that would receive full marks
           - Common points that students might miss
        """

    # Base prompt
    prompt = f"""Generate {num_questions} {question_type.lower()} exam questions based on {cognitive_level.lower()} level from the following material:

{knowledge_material}

{format_instructions}

{extra_instructions}

Please format the output clearly with:
1. Questions section (numbered 1, 2, 3, etc.)
2. Answer Key section (clearly separated from questions)
3. Each answer should include explanation for better understanding

Make sure all questions and answers are directly related to the provided material."""

    # Modify prompt for case-based medical situations
    if case_based:
        prompt = f"""Generate {num_questions} {question_type.lower()} case-based medical exam questions based on {cognitive_level.lower()} level.

Use this material as the medical knowledge base:
{knowledge_material}

Each question should:
1. Start with a medical case scenario/patient presentation
2. Include relevant clinical details
3. Ask about diagnosis, treatment, or management
4. Be at {cognitive_level.lower()} cognitive level

{format_instructions}

{extra_instructions}

Please format the output with:
1. Cases and Questions (numbered 1, 2, 3, etc.)
2. Detailed Answer Key section including:
   - Correct answers
   - Clinical reasoning
   - Key diagnostic or treatment considerations
   - Common pitfalls to avoid"""

    retries = 0
    while retries < max_retries:
        try:
            response = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {"role": "system", "content": "You are an expert exam question generator with deep knowledge in medical education. Create clear, well-structured questions with detailed answer keys and explanations."},
                    {"role": "user", "content": prompt}
                ],
                temperature=0.7,
                max_tokens=3000  # Increased to accommodate answers and explanations
            )
            return response.choices[0].message.content
        except Exception as e:
            retries += 1
            st.warning(f"Attempt {retries} failed. Retrying... Error: {str(e)}")
            if retries == max_retries:
                st.error(f"Failed to generate questions after {max_retries} attempts. Error: {str(e)}")
                return None
            time.sleep(2)

# ระบบ login
if 'username' not in st.session_state:
    st.title("Login")
    username_input = st.text_input("Enter your username:")
    if st.button("Login"):
        if username_input:
            if check_user_in_sheet(username_input):
                st.session_state['username'] = username_input
                st.success(f"Welcome, {username_input}!")
                update_api_usage(username_input)
            else:
                st.warning("Username not found. Please try again.")
        else:
            st.warning("Please enter a valid username.")
else:
    # Main App after login
    st.title(f"Welcome, {st.session_state['username']}! Generate your exam questions")

    # Input field for knowledge material (text) with 3,000-word limit
    knowledge_material = st.text_area("Enter knowledge material to generate exam questions:")
    
    # Word count check
    if len(knowledge_material.split()) > 3000:
        st.warning("Please limit the knowledge material to 3,000 words or fewer.")

    # File uploader for PDFs (limited to 5 MB)
    uploaded_file = st.file_uploader("Upload a file (PDF)", type="pdf")
    
    if uploaded_file is not None:
        if uploaded_file.size > 5 * 1024 * 1024:  # 5 MB limit
            st.warning("File size exceeds 5 MB. Please upload a smaller file.")
        else:
            st.success("File uploaded successfully! (Text extraction not implemented yet.)")

    # Select question type
    question_type = st.selectbox("Select question type:", 
                                 ["Multiple Choice", "Fill in the Blank", "Open-ended", "True/False"])

    # For multiple choice, let users select the number of choices
    num_choices = None
    if question_type == "Multiple Choice":
        num_choices = st.selectbox("Select the number of choices for each question:", [3, 4, 5])

    # Select cognitive level
    cognitive_level = st.selectbox("Select cognitive level:", 
                                   ["Recall", "Understanding", "Application", "Analysis", "Synthesis", "Evaluation"])

    # Checkbox for Case-Based Medical Situations
    case_based = st.checkbox("Generate case-based medical exam questions")

    # Extra input field for additional instructions (placed below cognitive level)
    extra_instructions = st.text_area("Enter additional instructions (e.g., how you want the questions to be phrased):")

    # Generate questions button
    if 'previous_questions' not in st.session_state:
        st.session_state['previous_questions'] = []

    if st.button("Generate Questions"):
        if len(knowledge_material.split()) <= 3000:
            # Generate questions with retry logic
            questions = generate_questions_with_retry(
                knowledge_material, 
                question_type, 
                cognitive_level, 
                extra_instructions, 
                case_based, 
                num_choices
            )
            
            if questions:
                st.write("Generated Exam Questions:")
                st.write(questions)

                # Avoid showing repeated content in future requests
                st.session_state['previous_questions'].append(questions)

                # Option to download the questions as a text file
                st.download_button(
                    label="Download Questions",
                    data=questions,
                    file_name='generated_questions.txt',
                    mime='text/plain'
                )
        else:
            st.warning("Please reduce the word count to 3,000 or fewer.")

    # Button to generate more questions based on the same material
    if st.button("Generate More Questions"):
        if len(knowledge_material.split()) <= 3000:
            # Regenerate new questions, trying to avoid repeated content
            questions = generate_questions_with_retry(
                knowledge_material, 
                question_type, 
                cognitive_level, 
                extra_instructions, 
                case_based, 
                num_choices
            )

            # Check if the new set of questions is not the same as the previous set
            if questions and questions not in st.session_state['previous_questions']:
                st.write("Generated More Exam Questions:")
                st.write(questions)

                # Append the new questions to the session state
                st.session_state['previous_questions'].append(questions)

                # Option to download the new set of questions
                st.download_button(
                    label="Download More Questions",
                    data=questions,
                    file_name='more_generated_questions.txt',
                    mime='text/plain'
                )
            else:
                st.warning("New questions seem to overlap with the previous ones. Try adjusting the instructions.")
        else:
            st.warning("Please reduce the word count to 3,000 or fewer.")