File size: 10,454 Bytes
da05eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import streamlit as st
import numpy as np
import cv2
import matplotlib.pyplot as plt
# -----------------------------------------------------------------
# Utility functions
# -----------------------------------------------------------------
def generate_colorful_image(height=256, width=256, p_blue=0.5):
"""
Generates a synthetic image (height x width) with:
- 'p_blue' fraction of blueish pixels
- (1 - p_blue) fraction of near-white/grey
Includes near-blue shades for more realistic challenge.
"""
img = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(height):
for j in range(width):
if np.random.rand() < p_blue:
# Random shade of blue
b = np.random.randint(100, 256)
g = np.random.randint(0, 121)
r = np.random.randint(0, 121)
if np.random.rand() < 0.3: # shift to near-blue
g += np.random.randint(0, 30)
r += np.random.randint(0, 30)
b = min(b, 255)
g = min(g, 255)
r = min(r, 255)
img[i, j] = [b, g, r]
else:
# White/grey region
base = np.random.randint(180, 256)
diff_r = np.random.randint(-20, 20)
diff_g = np.random.randint(-20, 20)
diff_b = np.random.randint(-20, 20)
b = np.clip(base + diff_b, 0, 255)
g = np.clip(base + diff_g, 0, 255)
r = np.clip(base + diff_r, 0, 255)
img[i, j] = [b, g, r]
return img
def simple_threshold_blue(image_bgr):
"""
Simple approach:
1) Convert to HSV
2) Single broad threshold for blue
3) Count ratio of blue pixels
"""
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
# Broad range for 'blue'
lower_blue = np.array([90, 50, 50], dtype=np.uint8)
upper_blue = np.array([130, 255, 255], dtype=np.uint8)
mask = cv2.inRange(hsv, lower_blue, upper_blue)
blue_pixels = cv2.countNonZero(mask)
total_pixels = image_bgr.shape[0] * image_bgr.shape[1]
perc_blue = (blue_pixels / total_pixels) * 100
return perc_blue, mask
def advanced_threshold_blue(image_bgr):
"""
Advanced approach:
1) Multiple color ranges for deep & light blues
2) Morphological cleaning
3) Count ratio of blue pixels
"""
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
# Range 1: Deeper/darker blues
lower_blue1 = np.array([90, 50, 50], dtype=np.uint8)
upper_blue1 = np.array([130, 255, 255], dtype=np.uint8)
mask1 = cv2.inRange(hsv, lower_blue1, upper_blue1)
# Range 2: Lighter or near-cyan
lower_blue2 = np.array([80, 30, 50], dtype=np.uint8)
upper_blue2 = np.array([100, 255, 255], dtype=np.uint8)
mask2 = cv2.inRange(hsv, lower_blue2, upper_blue2)
combined_mask = cv2.bitwise_or(mask1, mask2)
# Morphological cleaning
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
cleaned_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel)
cleaned_mask = cv2.morphologyEx(cleaned_mask, cv2.MORPH_CLOSE, kernel)
blue_pixels = cv2.countNonZero(cleaned_mask)
total_pixels = image_bgr.shape[0] * image_bgr.shape[1]
perc_blue = (blue_pixels / total_pixels) * 100
return perc_blue, cleaned_mask
def plot_color_histogram(image_bgr):
"""
Creates a matplotlib figure of B, G, and R channel histograms.
"""
color = ('b','g','r')
fig, ax = plt.subplots(figsize=(4,3))
for i,col in enumerate(color):
hist = cv2.calcHist([image_bgr],[i],None,[256],[0,256])
ax.plot(hist, color=col)
ax.set_xlim([0,256])
ax.set_title("Color Channel Histogram")
ax.set_xlabel("Pixel Intensity")
ax.set_ylabel("Frequency")
fig.tight_layout()
return fig
# -----------------------------------------------------------------
# Streamlit App
# -----------------------------------------------------------------
# Page config
st.set_page_config(page_title="ITC PSPD - Blue Area Detection Demo", layout="centered")
st.title("Color Detection Demo for ITC PSPD")
st.markdown("""
**This assignment showcases an Industry 4.0 approach** to **color segmentation**,
demonstrating how tools like Python, OpenCV, and Streamlit can automate **quality checks**
(similar to checking the quality of paperboards, packaging prints, or other color-critical products).
---
**Why It Matters for ITC PSPD**:
- ITC Paperboards & Specialty Papers Division (PSPD) is a leader in paper, packaging, and specialty solutions.
- Precise color detection ensures **consistent brand identity**, reduces **defects**, and aligns with ITC's
**sustainability** and **innovation** ethos.
Below, you can:
1. **Generate** a synthetic image with random shades of **blue** and **near-white** regions.
2. **Analyze** the image using both **Simple** and **Advanced** thresholding.
3. **Visualize** color histograms and masks.
4. See how this **digital transformation** approach can benefit large-scale production lines.
---
""")
st.sidebar.header("Generation Controls")
p_blue = st.sidebar.slider("Fraction of Blue-ish Pixels", 0.0, 1.0, 0.5, 0.05)
img_size = st.sidebar.selectbox("Image Size (px)", [128, 192, 256, 320], index=2)
if "random_image" not in st.session_state:
st.session_state["random_image"] = None
st.sidebar.markdown("---")
if st.sidebar.button("Generate New Random Image"):
img_bgr = generate_colorful_image(height=img_size, width=img_size, p_blue=p_blue)
st.session_state["random_image"] = img_bgr
# Check if we have an image
if st.session_state["random_image"] is None:
st.warning("Use the sidebar to generate a new image.")
else:
st.subheader("1) Randomly Generated Image & Color Analysis")
# Convert BGR->RGB for display
img_bgr = st.session_state["random_image"]
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
col1, col2 = st.columns(2)
with col1:
st.image(img_rgb, caption="Synthesized Image (RGB)", width=250)
with col2:
# Show color histogram
hist_fig = plot_color_histogram(img_bgr)
st.pyplot(hist_fig)
st.markdown("---")
# Simple Threshold
st.subheader("2) Simple Threshold Approach")
simple_perc_blue, simple_mask = simple_threshold_blue(img_bgr)
col3, col4 = st.columns(2)
with col3:
st.write(f"**Blue Percentage (Simple):** {simple_perc_blue:.2f}%")
st.progress(min(simple_perc_blue/100, 1.0))
with col4:
st.image(simple_mask, caption="Simple Mask (white=detected blue)", width=250)
st.markdown("---")
# Advanced Threshold
st.subheader("3) Advanced Threshold Approach")
adv_perc_blue, adv_mask = advanced_threshold_blue(img_bgr)
col5, col6 = st.columns(2)
with col5:
st.write(f"**Blue Percentage (Advanced):** {adv_perc_blue:.2f}%")
st.progress(min(adv_perc_blue/100, 1.0))
with col6:
st.image(adv_mask, caption="Advanced Mask (white=detected blue)", width=250)
st.markdown("""
---
## Relevance to ITC PSPD:
- **Digital Quality Control**: A color detection system like this can **validate printed matter** (cartons, labels) in real time.
- **Big Data Integration**: Results could be uploaded to a **data lake**, enabling historical trend analysis and continuous improvement.
- **Sustainability**: **Accurate color checks** reduce material wastage, aligning with ITC’s triple bottom line (economic, social, environmental) philosophy.
- **Industry 4.0**: Coupling this solution with **IoT** sensors, real-time dashboards, and advanced analytics ensures **agile and data-driven** paperboard manufacturing.
## Made By:
**Kaustubh Raykar**
- +91 7020524609
- [[email protected]](mailto:[email protected])
- [[email protected]](mailto:[email protected])
---
**Thank you for exploring this demonstration!**
""")
# -----------------------------------------------------------------
# How the Code Works - Explanation
# -----------------------------------------------------------------
st.header("How This Code Works")
st.markdown("""
1. **Utility Functions**
- **generate_colorful_image**: Creates a synthetic image with a customizable proportion of blue pixels. This simulates different real-world scenarios, such as varying amounts of a brand color on packaging.
- **simple_threshold_blue**: Uses basic HSV thresholding to identify blue pixels. Provides a quick, broad detection method.
- **advanced_threshold_blue**: Combines multiple ranges for different shades of blue and applies morphological operations for noise reduction, giving more robust results.
- **plot_color_histogram**: Plots separate color channel (B, G, R) histograms to visualize the distribution of pixel intensities.
2. **Streamlit Layout**
- **Sidebar**: Controls to adjust the fraction of blueish pixels and the image size. A button to generate a new random image is also included.
- **Main Page**:
- Displays the generated image and its color histogram side by side.
- Shows the simple vs. advanced detection masks with the calculated percentage of blue.
- Progress bars indicate the proportion of blue visually.
3. **Industry 4.0 Context**
- By integrating this approach with IoT devices, large-scale manufacturing lines can automate color checks. The masks and percentage calculations serve as a foundation for real-time QA alerts, data logging, and future analytics.
4. **Execution Flow**
1. When the user clicks "Generate New Random Image," it calls `generate_colorful_image()` to create a fresh synthetic image.
2. The image is converted to RGB for display. Meanwhile, `plot_color_histogram()` renders a histogram for deeper insight into color distribution.
3. The **simple_threshold_blue** and **advanced_threshold_blue** functions each produce their own masks and calculations, displayed in the main interface.
4. By comparing the results of both methods, users can see the differences in detection accuracy and how morphological operations can refine the result.
This cohesive setup ensures a **user-friendly**, **real-time** demonstration of how color segmentation can be applied to industrial use cases—especially relevant for ITC PSPD's commitments to **quality** and **innovation**.
""")
|