|
|
|
|
|
import streamlit as st
|
|
import torch
|
|
import torch.nn as nn
|
|
import pickle
|
|
import numpy as np
|
|
import pandas as pd
|
|
from typing import List, Dict, Tuple, Optional
|
|
|
|
|
|
from rdkit import Chem
|
|
from rdkit.Chem import Draw, Descriptors
|
|
from rdkit import RDLogger
|
|
RDLogger.DisableLog('rdApp.*')
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
sns.set_style('whitegrid')
|
|
|
|
|
|
import torch.nn.functional as F
|
|
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU
|
|
|
|
from torch_geometric.data import Data
|
|
from torch_geometric.nn import GCNConv, GINConv
|
|
from torch_geometric.nn import global_mean_pool, global_add_pool
|
|
|
|
|
|
@st.cache_resource
|
|
def load_vae_model(device):
|
|
|
|
with open('vae_vocab.pkl', 'rb') as f:
|
|
vocab = pickle.load(f)
|
|
vocab_size = len(vocab)
|
|
|
|
|
|
hidden_dim = 256
|
|
latent_dim = 64
|
|
|
|
|
|
class VAE(nn.Module):
|
|
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int):
|
|
super(VAE, self).__init__()
|
|
self.vocab_size = vocab_size
|
|
self.hidden_dim = hidden_dim
|
|
self.latent_dim = latent_dim
|
|
|
|
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True)
|
|
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
|
|
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
|
|
|
|
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True)
|
|
self.fc_output = nn.Linear(hidden_dim, vocab_size)
|
|
|
|
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
_, h = self.encoder(x)
|
|
h = h.squeeze(0)
|
|
return self.fc_mu(h), self.fc_logvar(h)
|
|
|
|
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
|
std = torch.exp(0.5 * logvar)
|
|
eps = torch.randn_like(std)
|
|
return mu + eps * std
|
|
|
|
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor:
|
|
batch_size = z.size(0)
|
|
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
|
|
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device)
|
|
x[:, 0, vocab['<']] = 1
|
|
outputs = []
|
|
|
|
for _ in range(max_length):
|
|
z_input = z.unsqueeze(1)
|
|
decoder_input = torch.cat([x, z_input], dim=2)
|
|
output, h = self.decoder(decoder_input, h)
|
|
output = self.fc_output(output)
|
|
outputs.append(output)
|
|
x = torch.softmax(output, dim=-1)
|
|
|
|
return torch.cat(outputs, dim=1)
|
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
mu, logvar = self.encode(x)
|
|
z = self.reparameterize(mu, logvar)
|
|
return self.decode(z, x.size(1)), mu, logvar
|
|
|
|
model = VAE(vocab_size, hidden_dim, latent_dim)
|
|
model.load_state_dict(torch.load('vae_model.pth', map_location=device))
|
|
model.to(device)
|
|
model.eval()
|
|
return model, vocab
|
|
|
|
|
|
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100):
|
|
model.eval()
|
|
inv_vocab = {v: k for k, v in vocab.items()}
|
|
generated_smiles = []
|
|
device = next(model.parameters()).device
|
|
|
|
with torch.no_grad():
|
|
for _ in range(num_samples):
|
|
z = torch.randn(1, model.latent_dim).to(device)
|
|
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
|
x[0, 0, vocab['<']] = 1
|
|
h = torch.zeros(1, 1, model.hidden_dim).to(device)
|
|
|
|
smiles = ''
|
|
for _ in range(max_length):
|
|
z_input = z.unsqueeze(1)
|
|
decoder_input = torch.cat([x, z_input], dim=2)
|
|
output, h = model.decoder(decoder_input, h)
|
|
output = model.fc_output(output)
|
|
|
|
probs = torch.softmax(output.squeeze(0), dim=-1)
|
|
next_char = torch.multinomial(probs, 1).item()
|
|
|
|
if next_char == vocab['>']:
|
|
break
|
|
|
|
smiles += inv_vocab.get(next_char, '')
|
|
x = torch.zeros(1, 1, model.vocab_size).to(device)
|
|
x[0, 0, next_char] = 1
|
|
|
|
generated_smiles.append(smiles)
|
|
|
|
return generated_smiles
|
|
|
|
|
|
def enhanced_post_process_smiles(smiles: str) -> str:
|
|
smiles = smiles.replace('<', '').replace('>', '')
|
|
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789')
|
|
smiles = ''.join(c for c in smiles if c in allowed_chars)
|
|
|
|
|
|
open_count = smiles.count('(')
|
|
close_count = smiles.count(')')
|
|
if open_count > close_count:
|
|
smiles += ')' * (open_count - close_count)
|
|
elif close_count > open_count:
|
|
smiles = '(' * (close_count - open_count) + smiles
|
|
|
|
|
|
smiles = smiles.replace('==', '=')
|
|
|
|
|
|
for i in range(1, 10):
|
|
if smiles.count(str(i)) % 2 != 0:
|
|
smiles += str(i)
|
|
|
|
return smiles
|
|
|
|
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]:
|
|
mol = Chem.MolFromSmiles(smiles)
|
|
if mol is not None:
|
|
try:
|
|
Chem.SanitizeMol(mol)
|
|
return True, Chem.MolToSmiles(mol, isomericSmiles=True)
|
|
except:
|
|
pass
|
|
return False, smiles
|
|
|
|
|
|
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict:
|
|
results = {
|
|
'total': len(smiles_list),
|
|
'valid': 0,
|
|
'invalid': 0,
|
|
'unique': 0,
|
|
'corrected': 0,
|
|
'novel': 0,
|
|
'valid_properties': [],
|
|
'novel_properties': [],
|
|
'invalid_smiles': []
|
|
}
|
|
|
|
unique_smiles = set()
|
|
novel_smiles = set()
|
|
|
|
for smiles in smiles_list:
|
|
processed_smiles = enhanced_post_process_smiles(smiles)
|
|
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles)
|
|
|
|
if is_valid:
|
|
results['valid'] += 1
|
|
unique_smiles.add(corrected_smiles)
|
|
if corrected_smiles != processed_smiles:
|
|
results['corrected'] += 1
|
|
|
|
mol = Chem.MolFromSmiles(corrected_smiles)
|
|
if mol:
|
|
props = {
|
|
'smiles': corrected_smiles,
|
|
'MolWt': Descriptors.ExactMolWt(mol),
|
|
'LogP': Descriptors.MolLogP(mol),
|
|
'NumHDonors': Descriptors.NumHDonors(mol),
|
|
'NumHAcceptors': Descriptors.NumHAcceptors(mol)
|
|
}
|
|
|
|
if corrected_smiles not in training_smiles_set:
|
|
novel_smiles.add(corrected_smiles)
|
|
results['novel'] += 1
|
|
results['novel_properties'].append(props)
|
|
else:
|
|
results['valid_properties'].append(props)
|
|
else:
|
|
results['invalid'] += 1
|
|
results['invalid_smiles'].append(smiles)
|
|
|
|
results['unique'] = len(unique_smiles)
|
|
return results
|
|
|
|
|
|
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]:
|
|
valid_mols = []
|
|
for smiles in smiles_list:
|
|
smiles = smiles.strip().strip('<>').strip()
|
|
if not smiles:
|
|
continue
|
|
try:
|
|
mol = Chem.MolFromSmiles(smiles)
|
|
if mol is not None:
|
|
valid_mols.append(mol)
|
|
if len(valid_mols) == n:
|
|
break
|
|
except Exception:
|
|
continue
|
|
|
|
if not valid_mols:
|
|
return None
|
|
|
|
try:
|
|
img = Draw.MolsToGridImage(
|
|
valid_mols,
|
|
molsPerRow=min(3, len(valid_mols)),
|
|
subImgSize=(200, 200),
|
|
legends=[f"Mol {i+1}" for i in range(len(valid_mols))]
|
|
)
|
|
return img
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
class GCN(torch.nn.Module):
|
|
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer"""
|
|
|
|
def __init__(self, dim_h):
|
|
"""init method for GCN
|
|
|
|
Args:
|
|
dim_h (int): the dimension of hidden layers
|
|
"""
|
|
super().__init__()
|
|
self.conv1 = GCNConv(11, dim_h)
|
|
self.conv2 = GCNConv(dim_h, dim_h)
|
|
self.conv3 = GCNConv(dim_h, dim_h)
|
|
self.lin = torch.nn.Linear(dim_h, 1)
|
|
|
|
def forward(self, data):
|
|
e = data.edge_index
|
|
x = data.x
|
|
|
|
x = self.conv1(x, e)
|
|
x = x.relu()
|
|
x = self.conv2(x, e)
|
|
x = x.relu()
|
|
x = self.conv3(x, e)
|
|
x = global_mean_pool(x, data.batch)
|
|
|
|
x = F.dropout(x, p=0.5, training=self.training)
|
|
x = self.lin(x)
|
|
|
|
return x
|
|
|
|
class GIN(torch.nn.Module):
|
|
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers"""
|
|
|
|
def __init__(self, dim_h):
|
|
"""Initializing GIN class
|
|
|
|
Args:
|
|
dim_h (int): the dimension of hidden layers
|
|
"""
|
|
super(GIN, self).__init__()
|
|
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
|
self.conv1 = GINConv(nn1)
|
|
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
|
self.conv2 = GINConv(nn2)
|
|
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
|
|
self.conv3 = GINConv(nn3)
|
|
self.lin1 = Linear(dim_h, dim_h)
|
|
self.lin2 = Linear(dim_h, 1)
|
|
|
|
def forward(self, data):
|
|
x = data.x
|
|
edge_index = data.edge_index
|
|
batch = data.batch
|
|
|
|
|
|
h = self.conv1(x, edge_index)
|
|
h = h.relu()
|
|
h = self.conv2(h, edge_index)
|
|
h = h.relu()
|
|
h = self.conv3(h, edge_index)
|
|
|
|
|
|
h = global_add_pool(h, batch)
|
|
|
|
h = self.lin1(h)
|
|
h = h.relu()
|
|
h = F.dropout(h, p=0.5, training=self.training)
|
|
h = self.lin2(h)
|
|
|
|
return h
|
|
|
|
|
|
@st.cache_resource
|
|
def load_gnn_models(device):
|
|
|
|
gcn_model = GCN(dim_h=128)
|
|
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device))
|
|
gcn_model.to(device)
|
|
gcn_model.eval()
|
|
|
|
|
|
gin_model = GIN(dim_h=64)
|
|
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device))
|
|
gin_model.to(device)
|
|
gin_model.eval()
|
|
|
|
return gcn_model, gin_model
|
|
|
|
|
|
@st.cache_resource
|
|
def load_data_norm(device):
|
|
data_norm = torch.load('data_norm.pth', map_location=device)
|
|
data_mean = data_norm['mean']
|
|
data_std = data_norm['std']
|
|
return data_mean, data_std
|
|
|
|
|
|
def smiles_to_data(smiles):
|
|
mol = Chem.MolFromSmiles(smiles)
|
|
if mol is None:
|
|
return None
|
|
|
|
atoms = mol.GetAtoms()
|
|
num_atoms = len(atoms)
|
|
|
|
atom_type_list = ['H', 'C', 'N', 'O', 'F']
|
|
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3]
|
|
|
|
x = []
|
|
for atom in atoms:
|
|
atom_type = atom.GetSymbol()
|
|
atom_type_feature = [int(atom_type == s) for s in atom_type_list]
|
|
|
|
|
|
degree = atom.GetDegree()
|
|
degree_feature = [degree / 4]
|
|
|
|
|
|
formal_charge = atom.GetFormalCharge()
|
|
formal_charge_feature = [formal_charge / 4]
|
|
|
|
|
|
is_aromatic = atom.GetIsAromatic()
|
|
aromatic_feature = [int(is_aromatic)]
|
|
|
|
|
|
hybridization = atom.GetHybridization()
|
|
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list]
|
|
|
|
|
|
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature
|
|
x.append(atom_feature)
|
|
|
|
x = torch.tensor(x, dtype=torch.float)
|
|
|
|
|
|
edge_index = []
|
|
for bond in mol.GetBonds():
|
|
i = bond.GetBeginAtomIdx()
|
|
j = bond.GetEndAtomIdx()
|
|
edge_index.append([i, j])
|
|
edge_index.append([j, i])
|
|
|
|
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
|
|
|
|
|
|
batch = torch.zeros(num_atoms, dtype=torch.long)
|
|
|
|
|
|
data = Data(x=x, edge_index=edge_index, batch=batch)
|
|
|
|
return data
|
|
|
|
|
|
def main():
|
|
st.set_page_config(
|
|
page_title="π§ͺ Molecule Generator and Property Predictor",
|
|
page_icon="π§ͺ",
|
|
layout="wide",
|
|
initial_sidebar_state="expanded",
|
|
)
|
|
|
|
|
|
st.title("π§ͺ Molecular Generation and Analysis using VAE and GNN")
|
|
st.markdown("""
|
|
This application allows you to generate novel molecular structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset.
|
|
You can also predict molecular properties using pre-trained Graph Neural Network (GNN) models (GCN and GIN).
|
|
""")
|
|
|
|
|
|
if 'analysis' not in st.session_state:
|
|
st.session_state.analysis = None
|
|
if 'generated_smiles' not in st.session_state:
|
|
st.session_state.generated_smiles = []
|
|
if 'vae_generated' not in st.session_state:
|
|
st.session_state.vae_generated = False
|
|
|
|
|
|
st.sidebar.title("π§ Configuration")
|
|
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.")
|
|
|
|
|
|
@st.cache_data
|
|
def load_training_data():
|
|
df = pd.read_csv("qm9.csv")
|
|
smiles_list_raw = df['smiles'].tolist()
|
|
|
|
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw]
|
|
return set(smiles_list)
|
|
|
|
training_smiles_set = load_training_data()
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
st.sidebar.title("π Model Selection")
|
|
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)"))
|
|
|
|
if model_option == "Generate Molecules (VAE)":
|
|
|
|
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5)
|
|
|
|
|
|
seed = st.sidebar.number_input("Random Seed", value=42, step=1)
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
if st.sidebar.button("π Generate Molecules"):
|
|
with st.spinner("Generating molecules..."):
|
|
|
|
model, vocab = load_vae_model(device)
|
|
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples)
|
|
|
|
analysis = analyze_molecules(generated_smiles, training_smiles_set)
|
|
|
|
st.session_state.generated_smiles = generated_smiles
|
|
st.session_state.analysis = analysis
|
|
st.session_state.vae_generated = True
|
|
|
|
|
|
st.success("β
Molecule generation completed!")
|
|
st.subheader("Summary of Generated Molecules")
|
|
col1, col2, col3, col4 = st.columns(4)
|
|
col1.metric("Total Generated", analysis['total'])
|
|
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)")
|
|
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)")
|
|
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)")
|
|
|
|
col1, col2 = st.columns(2)
|
|
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)")
|
|
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)")
|
|
|
|
|
|
if analysis['valid_properties'] or analysis['novel_properties']:
|
|
st.subheader("Properties of Generated Molecules")
|
|
|
|
tab1, tab2 = st.tabs(["β
Valid Molecules", "π Novel Molecules"])
|
|
with tab1:
|
|
if analysis['valid_properties']:
|
|
df_valid = pd.DataFrame(analysis['valid_properties'])
|
|
st.dataframe(df_valid)
|
|
|
|
st.subheader("Sample Valid Molecules")
|
|
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9)
|
|
if mol_image_valid:
|
|
st.image(mol_image_valid)
|
|
else:
|
|
st.write("No valid molecules to display.")
|
|
else:
|
|
st.write("No valid molecules found.")
|
|
|
|
with tab2:
|
|
if analysis['novel_properties']:
|
|
df_novel = pd.DataFrame(analysis['novel_properties'])
|
|
st.dataframe(df_novel)
|
|
|
|
st.subheader("Sample Novel Molecules")
|
|
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9)
|
|
if mol_image_novel:
|
|
st.image(mol_image_novel)
|
|
else:
|
|
st.write("No novel molecules to display.")
|
|
else:
|
|
st.write("No novel molecules found.")
|
|
|
|
|
|
st.subheader("Property Distributions")
|
|
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
|
|
if analysis['valid_properties']:
|
|
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid')
|
|
if analysis['novel_properties']:
|
|
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel')
|
|
axs[0, 0].set_title('Molecular Weight Distribution')
|
|
axs[0, 0].legend()
|
|
|
|
if analysis['valid_properties']:
|
|
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid')
|
|
if analysis['novel_properties']:
|
|
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel')
|
|
axs[0, 1].set_title('LogP Distribution')
|
|
axs[0, 1].legend()
|
|
|
|
if analysis['valid_properties']:
|
|
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
|
df_novel['NumHDonors'].max()) + 2),
|
|
ax=axs[1, 0], kde=False, color='skyblue', label='Valid')
|
|
if analysis['novel_properties']:
|
|
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
|
|
df_novel['NumHDonors'].max()) + 2),
|
|
ax=axs[1, 0], kde=False, color='orange', label='Novel')
|
|
axs[1, 0].set_title('Number of H Donors')
|
|
axs[1, 0].legend()
|
|
|
|
if analysis['valid_properties']:
|
|
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
|
df_novel['NumHAcceptors'].max()) + 2),
|
|
ax=axs[1, 1], kde=False, color='skyblue', label='Valid')
|
|
if analysis['novel_properties']:
|
|
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
|
|
df_novel['NumHAcceptors'].max()) + 2),
|
|
ax=axs[1, 1], kde=False, color='orange', label='Novel')
|
|
axs[1, 1].set_title('Number of H Acceptors')
|
|
axs[1, 1].legend()
|
|
|
|
plt.tight_layout()
|
|
st.pyplot(fig)
|
|
|
|
|
|
csv_valid = df_valid.to_csv(index=False).encode('utf-8')
|
|
csv_novel = df_novel.to_csv(index=False).encode('utf-8')
|
|
col1, col2 = st.columns(2)
|
|
with col1:
|
|
st.download_button(
|
|
label="πΎ Download Valid Molecules CSV",
|
|
data=csv_valid,
|
|
file_name='valid_molecules.csv',
|
|
mime='text/csv'
|
|
)
|
|
with col2:
|
|
st.download_button(
|
|
label="πΎ Download Novel Molecules CSV",
|
|
data=csv_novel,
|
|
file_name='novel_molecules.csv',
|
|
mime='text/csv'
|
|
)
|
|
else:
|
|
st.warning("No valid or novel molecules were generated.")
|
|
|
|
elif model_option == "Predict Property (GNN)":
|
|
|
|
with st.spinner("Loading GNN models..."):
|
|
gcn_model, gin_model = load_gnn_models(device)
|
|
|
|
data_mean, data_std = load_data_norm(device)
|
|
|
|
|
|
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN"))
|
|
|
|
st.subheader("π Predict Molecular Property using GNN")
|
|
st.markdown("""
|
|
Input a SMILES string to predict the dipole moment using the selected GNN model.
|
|
""")
|
|
|
|
|
|
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "")
|
|
|
|
if user_smiles:
|
|
data = smiles_to_data(user_smiles)
|
|
if data:
|
|
data = data.to(device)
|
|
if gnn_model_option == "GCN":
|
|
prediction = gcn_model(data)
|
|
prediction = prediction.item()
|
|
elif gnn_model_option == "GIN":
|
|
prediction = gin_model(data)
|
|
prediction = prediction.item()
|
|
|
|
prediction = prediction * data_std.item() + data_mean.item()
|
|
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
|
|
|
mol = Chem.MolFromSmiles(user_smiles)
|
|
if mol:
|
|
st.subheader("Molecular Structure")
|
|
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
|
else:
|
|
st.error("β Invalid SMILES string.")
|
|
|
|
st.markdown("---")
|
|
st.markdown("### Or select a molecule from the generated molecules (if any).")
|
|
|
|
|
|
if st.session_state.vae_generated and st.session_state.analysis is not None:
|
|
|
|
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties']
|
|
if all_properties:
|
|
smiles_options = [prop['smiles'] for prop in all_properties]
|
|
selected_smiles = st.selectbox("Select a molecule", smiles_options)
|
|
if selected_smiles:
|
|
data = smiles_to_data(selected_smiles)
|
|
if data:
|
|
data = data.to(device)
|
|
if gnn_model_option == "GCN":
|
|
prediction = gcn_model(data)
|
|
prediction = prediction.item()
|
|
elif gnn_model_option == "GIN":
|
|
prediction = gin_model(data)
|
|
prediction = prediction.item()
|
|
|
|
prediction = prediction * data_std.item() + data_mean.item()
|
|
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
|
|
|
|
mol = Chem.MolFromSmiles(selected_smiles)
|
|
if mol:
|
|
st.subheader("Molecular Structure")
|
|
st.image(Draw.MolToImage(mol, size=(300, 300)))
|
|
else:
|
|
st.error("β Invalid SMILES string.")
|
|
else:
|
|
st.info("π No valid or novel molecules available.")
|
|
else:
|
|
st.info("π No generated molecules available. Generate molecules using the VAE first.")
|
|
|
|
|
|
st.sidebar.title("βΉοΈ About")
|
|
st.sidebar.info("""
|
|
**Molecule Generator and Property Predictor App**
|
|
|
|
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties.
|
|
|
|
- **Developed by**: Arjun, Kaustubh, and Nachiket
|
|
- **Hugging Face Repository**: [Your Hugging Face Repository](https://huggingface.co/YourRepositoryLink)
|
|
""")
|
|
|
|
|
|
hide_streamlit_style = """
|
|
<style>
|
|
footer {visibility: hidden;}
|
|
header {visibility: hidden;}
|
|
</style>
|
|
"""
|
|
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|