Last commit not found
raw
history blame
27.4 kB
# app.py
import streamlit as st
import torch
import torch.nn as nn
import pickle
import numpy as np
import pandas as pd
from typing import List, Dict, Tuple, Optional
# RDKit for molecule handling
from rdkit import Chem
from rdkit.Chem import Draw, Descriptors
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
# Visualization libraries
import matplotlib.pyplot as plt
import seaborn as sns
# For generating images in Streamlit
from PIL import Image
# Suppress warnings in RDKit
import warnings
warnings.filterwarnings('ignore')
# Set Seaborn style
sns.set_style('whitegrid')
# Additional imports for GNN
import torch.nn.functional as F
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv, GINConv
from torch_geometric.nn import global_mean_pool, global_add_pool
# Function to load the VAE model
@st.cache_resource
def load_vae_model(device):
# Load the vocabulary
with open('vae_vocab.pkl', 'rb') as f:
vocab = pickle.load(f)
vocab_size = len(vocab)
# Initialize the model with the same parameters
hidden_dim = 256 # Ensure this matches your trained model
latent_dim = 64 # Ensure this matches your trained model
# Define the VAE class (same as in your training script)
class VAE(nn.Module):
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int):
super(VAE, self).__init__()
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.latent_dim = latent_dim
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True)
self.fc_output = nn.Linear(hidden_dim, vocab_size)
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
_, h = self.encoder(x)
h = h.squeeze(0)
return self.fc_mu(h), self.fc_logvar(h)
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor:
batch_size = z.size(0)
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device)
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device)
x[:, 0, vocab['<']] = 1 # Start token
outputs = []
for _ in range(max_length):
z_input = z.unsqueeze(1)
decoder_input = torch.cat([x, z_input], dim=2)
output, h = self.decoder(decoder_input, h)
output = self.fc_output(output)
outputs.append(output)
x = torch.softmax(output, dim=-1)
return torch.cat(outputs, dim=1)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z, x.size(1)), mu, logvar
model = VAE(vocab_size, hidden_dim, latent_dim)
model.load_state_dict(torch.load('vae_model.pth', map_location=device))
model.to(device)
model.eval()
return model, vocab
# Function to generate molecules using VAE
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100):
model.eval()
inv_vocab = {v: k for k, v in vocab.items()}
generated_smiles = []
device = next(model.parameters()).device
with torch.no_grad():
for _ in range(num_samples):
z = torch.randn(1, model.latent_dim).to(device)
x = torch.zeros(1, 1, model.vocab_size).to(device)
x[0, 0, vocab['<']] = 1
h = torch.zeros(1, 1, model.hidden_dim).to(device)
smiles = ''
for _ in range(max_length):
z_input = z.unsqueeze(1)
decoder_input = torch.cat([x, z_input], dim=2)
output, h = model.decoder(decoder_input, h)
output = model.fc_output(output)
probs = torch.softmax(output.squeeze(0), dim=-1)
next_char = torch.multinomial(probs, 1).item()
if next_char == vocab['>']:
break
smiles += inv_vocab.get(next_char, '')
x = torch.zeros(1, 1, model.vocab_size).to(device)
x[0, 0, next_char] = 1
generated_smiles.append(smiles)
return generated_smiles
# Function to post-process and validate SMILES strings
def enhanced_post_process_smiles(smiles: str) -> str:
smiles = smiles.replace('<', '').replace('>', '')
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789')
smiles = ''.join(c for c in smiles if c in allowed_chars)
# Balance parentheses
open_count = smiles.count('(')
close_count = smiles.count(')')
if open_count > close_count:
smiles += ')' * (open_count - close_count)
elif close_count > open_count:
smiles = '(' * (close_count - open_count) + smiles
# Replace invalid double bonds
smiles = smiles.replace('==', '=')
# Attempt to close unclosed rings
for i in range(1, 10):
if smiles.count(str(i)) % 2 != 0:
smiles += str(i)
return smiles
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
try:
Chem.SanitizeMol(mol)
return True, Chem.MolToSmiles(mol, isomericSmiles=True)
except:
pass
return False, smiles
# Function to analyze molecules
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict:
results = {
'total': len(smiles_list),
'valid': 0,
'invalid': 0,
'unique': 0,
'corrected': 0,
'novel': 0,
'valid_properties': [],
'novel_properties': [],
'invalid_smiles': []
}
unique_smiles = set()
novel_smiles = set()
for smiles in smiles_list:
processed_smiles = enhanced_post_process_smiles(smiles)
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles)
if is_valid:
results['valid'] += 1
unique_smiles.add(corrected_smiles)
if corrected_smiles != processed_smiles:
results['corrected'] += 1
mol = Chem.MolFromSmiles(corrected_smiles)
if mol:
props = {
'smiles': corrected_smiles,
'MolWt': Descriptors.ExactMolWt(mol),
'LogP': Descriptors.MolLogP(mol),
'NumHDonors': Descriptors.NumHDonors(mol),
'NumHAcceptors': Descriptors.NumHAcceptors(mol)
}
if corrected_smiles not in training_smiles_set:
novel_smiles.add(corrected_smiles)
results['novel'] += 1
results['novel_properties'].append(props)
else:
results['valid_properties'].append(props)
else:
results['invalid'] += 1
results['invalid_smiles'].append(smiles)
results['unique'] = len(unique_smiles)
return results
# Function to visualize molecules
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]:
valid_mols = []
for smiles in smiles_list:
smiles = smiles.strip().strip('<>').strip()
if not smiles:
continue
try:
mol = Chem.MolFromSmiles(smiles)
if mol is not None:
valid_mols.append(mol)
if len(valid_mols) == n:
break
except Exception:
continue
if not valid_mols:
return None
try:
img = Draw.MolsToGridImage(
valid_mols,
molsPerRow=min(3, len(valid_mols)),
subImgSize=(200, 200),
legends=[f"Mol {i+1}" for i in range(len(valid_mols))]
)
return img
except Exception:
return None
# GCN and GIN model definitions
class GCN(torch.nn.Module):
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer"""
def __init__(self, dim_h):
"""init method for GCN
Args:
dim_h (int): the dimension of hidden layers
"""
super().__init__()
self.conv1 = GCNConv(11, dim_h)
self.conv2 = GCNConv(dim_h, dim_h)
self.conv3 = GCNConv(dim_h, dim_h)
self.lin = torch.nn.Linear(dim_h, 1)
def forward(self, data):
e = data.edge_index
x = data.x
x = self.conv1(x, e)
x = x.relu()
x = self.conv2(x, e)
x = x.relu()
x = self.conv3(x, e)
x = global_mean_pool(x, data.batch)
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin(x)
return x
class GIN(torch.nn.Module):
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers"""
def __init__(self, dim_h):
"""Initializing GIN class
Args:
dim_h (int): the dimension of hidden layers
"""
super(GIN, self).__init__()
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv1 = GINConv(nn1)
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv2 = GINConv(nn2)
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU())
self.conv3 = GINConv(nn3)
self.lin1 = Linear(dim_h, dim_h)
self.lin2 = Linear(dim_h, 1)
def forward(self, data):
x = data.x
edge_index = data.edge_index
batch = data.batch
# Node embeddings
h = self.conv1(x, edge_index)
h = h.relu()
h = self.conv2(h, edge_index)
h = h.relu()
h = self.conv3(h, edge_index)
# Graph-level readout
h = global_add_pool(h, batch)
h = self.lin1(h)
h = h.relu()
h = F.dropout(h, p=0.5, training=self.training)
h = self.lin2(h)
return h
# Function to load GNN models
@st.cache_resource
def load_gnn_models(device):
# Load GCN model
gcn_model = GCN(dim_h=128)
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device))
gcn_model.to(device)
gcn_model.eval()
# Load GIN model
gin_model = GIN(dim_h=64)
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device))
gin_model.to(device)
gin_model.eval()
return gcn_model, gin_model
# Function to load normalization parameters
@st.cache_resource
def load_data_norm(device):
data_norm = torch.load('data_norm.pth', map_location=device)
data_mean = data_norm['mean']
data_std = data_norm['std']
return data_mean, data_std
# Function to convert SMILES to Data object
def smiles_to_data(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
atoms = mol.GetAtoms()
num_atoms = len(atoms)
atom_type_list = ['H', 'C', 'N', 'O', 'F']
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3]
x = []
for atom in atoms:
atom_type = atom.GetSymbol()
atom_type_feature = [int(atom_type == s) for s in atom_type_list] # 5 features
# Atom degree (scalar between 0 and 4)
degree = atom.GetDegree()
degree_feature = [degree / 4] # Normalize degree to [0,1] # 1 feature
# Formal charge
formal_charge = atom.GetFormalCharge()
formal_charge_feature = [formal_charge / 4] # Assume max formal charge is 4 # 1 feature
# Aromaticity
is_aromatic = atom.GetIsAromatic()
aromatic_feature = [int(is_aromatic)] # 1 feature
# Hybridization
hybridization = atom.GetHybridization()
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list] # 3 features
# Total features: 5 + 1 +1 +1 +3 = 11
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature
x.append(atom_feature)
x = torch.tensor(x, dtype=torch.float)
# Build edge indices
edge_index = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
edge_index.append([i, j])
edge_index.append([j, i]) # Since it's undirected
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous()
# Build batch tensor (since batch size is 1)
batch = torch.zeros(num_atoms, dtype=torch.long)
# Build Data object
data = Data(x=x, edge_index=edge_index, batch=batch)
return data
# Streamlit app
def main():
st.set_page_config(
page_title="πŸ§ͺ Molecule Generator and Property Predictor",
page_icon="πŸ§ͺ",
layout="wide",
initial_sidebar_state="expanded",
)
# Main Title and Description
st.title("πŸ§ͺ Molecular Generation and Analysis using VAE and GNN")
st.markdown("""
This application allows you to generate novel molecular structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset.
You can also predict molecular properties using pre-trained Graph Neural Network (GNN) models (GCN and GIN).
""")
# Initialize session state variables
if 'analysis' not in st.session_state:
st.session_state.analysis = None
if 'generated_smiles' not in st.session_state:
st.session_state.generated_smiles = []
if 'vae_generated' not in st.session_state:
st.session_state.vae_generated = False
# Sidebar configuration
st.sidebar.title("πŸ”§ Configuration")
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.")
# Load training data and canonicalize SMILES
@st.cache_data
def load_training_data():
df = pd.read_csv("qm9.csv")
smiles_list_raw = df['smiles'].tolist()
# Canonicalize SMILES for accurate comparison
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw]
return set(smiles_list)
training_smiles_set = load_training_data()
# Device selection
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model selection
st.sidebar.title("πŸ“Œ Model Selection")
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)"))
if model_option == "Generate Molecules (VAE)":
# Number of samples
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5)
# Random seed
seed = st.sidebar.number_input("Random Seed", value=42, step=1)
torch.manual_seed(seed)
np.random.seed(seed)
if st.sidebar.button("πŸš€ Generate Molecules"):
with st.spinner("Generating molecules..."):
# Load VAE model
model, vocab = load_vae_model(device)
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples)
# Analyze molecules
analysis = analyze_molecules(generated_smiles, training_smiles_set)
# Store results in session state
st.session_state.generated_smiles = generated_smiles
st.session_state.analysis = analysis
st.session_state.vae_generated = True
# Display summary
st.success("βœ… Molecule generation completed!")
st.subheader("Summary of Generated Molecules")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Generated", analysis['total'])
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)")
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)")
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)")
col1, col2 = st.columns(2)
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)")
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)")
# Display properties
if analysis['valid_properties'] or analysis['novel_properties']:
st.subheader("Properties of Generated Molecules")
tab1, tab2 = st.tabs(["βœ… Valid Molecules", "🌟 Novel Molecules"])
with tab1:
if analysis['valid_properties']:
df_valid = pd.DataFrame(analysis['valid_properties'])
st.dataframe(df_valid)
# Visualize valid molecules (limit to 9 for performance)
st.subheader("Sample Valid Molecules")
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9)
if mol_image_valid:
st.image(mol_image_valid)
else:
st.write("No valid molecules to display.")
else:
st.write("No valid molecules found.")
with tab2:
if analysis['novel_properties']:
df_novel = pd.DataFrame(analysis['novel_properties'])
st.dataframe(df_novel)
# Visualize novel molecules (limit to 9 for performance)
st.subheader("Sample Novel Molecules")
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9)
if mol_image_novel:
st.image(mol_image_novel)
else:
st.write("No novel molecules to display.")
else:
st.write("No novel molecules found.")
# Property distributions
st.subheader("Property Distributions")
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
if analysis['valid_properties']:
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel')
axs[0, 0].set_title('Molecular Weight Distribution')
axs[0, 0].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel')
axs[0, 1].set_title('LogP Distribution')
axs[0, 1].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
df_novel['NumHDonors'].max()) + 2),
ax=axs[1, 0], kde=False, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(),
df_novel['NumHDonors'].max()) + 2),
ax=axs[1, 0], kde=False, color='orange', label='Novel')
axs[1, 0].set_title('Number of H Donors')
axs[1, 0].legend()
if analysis['valid_properties']:
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
df_novel['NumHAcceptors'].max()) + 2),
ax=axs[1, 1], kde=False, color='skyblue', label='Valid')
if analysis['novel_properties']:
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(),
df_novel['NumHAcceptors'].max()) + 2),
ax=axs[1, 1], kde=False, color='orange', label='Novel')
axs[1, 1].set_title('Number of H Acceptors')
axs[1, 1].legend()
plt.tight_layout()
st.pyplot(fig)
# Download options
csv_valid = df_valid.to_csv(index=False).encode('utf-8')
csv_novel = df_novel.to_csv(index=False).encode('utf-8')
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="πŸ’Ύ Download Valid Molecules CSV",
data=csv_valid,
file_name='valid_molecules.csv',
mime='text/csv'
)
with col2:
st.download_button(
label="πŸ’Ύ Download Novel Molecules CSV",
data=csv_novel,
file_name='novel_molecules.csv',
mime='text/csv'
)
else:
st.warning("No valid or novel molecules were generated.")
elif model_option == "Predict Property (GNN)":
# Load GNN models
with st.spinner("Loading GNN models..."):
gcn_model, gin_model = load_gnn_models(device)
# Load normalization parameters
data_mean, data_std = load_data_norm(device)
# GNN Model selection
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN"))
st.subheader("πŸ” Predict Molecular Property using GNN")
st.markdown("""
Input a SMILES string to predict the dipole moment using the selected GNN model.
""")
# User inputs a SMILES string
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "")
if user_smiles:
data = smiles_to_data(user_smiles)
if data:
data = data.to(device)
if gnn_model_option == "GCN":
prediction = gcn_model(data)
prediction = prediction.item()
elif gnn_model_option == "GIN":
prediction = gin_model(data)
prediction = prediction.item()
# Unnormalize the prediction
prediction = prediction * data_std.item() + data_mean.item()
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
# Display molecule
mol = Chem.MolFromSmiles(user_smiles)
if mol:
st.subheader("Molecular Structure")
st.image(Draw.MolToImage(mol, size=(300, 300)))
else:
st.error("❌ Invalid SMILES string.")
st.markdown("---")
st.markdown("### Or select a molecule from the generated molecules (if any).")
# Check if molecules have been generated
if st.session_state.vae_generated and st.session_state.analysis is not None:
# Combine valid and novel properties
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties']
if all_properties:
smiles_options = [prop['smiles'] for prop in all_properties]
selected_smiles = st.selectbox("Select a molecule", smiles_options)
if selected_smiles:
data = smiles_to_data(selected_smiles)
if data:
data = data.to(device)
if gnn_model_option == "GCN":
prediction = gcn_model(data)
prediction = prediction.item()
elif gnn_model_option == "GIN":
prediction = gin_model(data)
prediction = prediction.item()
# Unnormalize the prediction
prediction = prediction * data_std.item() + data_mean.item()
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}")
# Display molecule
mol = Chem.MolFromSmiles(selected_smiles)
if mol:
st.subheader("Molecular Structure")
st.image(Draw.MolToImage(mol, size=(300, 300)))
else:
st.error("❌ Invalid SMILES string.")
else:
st.info("πŸ” No valid or novel molecules available.")
else:
st.info("πŸ” No generated molecules available. Generate molecules using the VAE first.")
# About section
st.sidebar.title("ℹ️ About")
st.sidebar.info("""
**Molecule Generator and Property Predictor App**
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties.
- **Developed by**: Arjun, Kaustubh, and Nachiket
- **Hugging Face Repository**: [Your Hugging Face Repository](https://huggingface.co/YourRepositoryLink)
""")
# Hide Streamlit footer and header
hide_streamlit_style = """
<style>
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Run the app
if __name__ == "__main__":
main()