Last commit not found
# app.py | |
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import pickle | |
import numpy as np | |
import pandas as pd | |
from typing import List, Dict, Tuple, Optional | |
# RDKit for molecule handling | |
from rdkit import Chem | |
from rdkit.Chem import Draw, Descriptors | |
from rdkit import RDLogger | |
RDLogger.DisableLog('rdApp.*') | |
# Visualization libraries | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# For generating images in Streamlit | |
from PIL import Image | |
# Suppress warnings in RDKit | |
import warnings | |
warnings.filterwarnings('ignore') | |
# Set Seaborn style | |
sns.set_style('whitegrid') | |
# Additional imports for GNN | |
import torch.nn.functional as F | |
from torch.nn import Linear, Sequential, BatchNorm1d, ReLU | |
from torch_geometric.data import Data | |
from torch_geometric.nn import GCNConv, GINConv | |
from torch_geometric.nn import global_mean_pool, global_add_pool | |
# Function to load the VAE model | |
def load_vae_model(device): | |
# Load the vocabulary | |
with open('vae_vocab.pkl', 'rb') as f: | |
vocab = pickle.load(f) | |
vocab_size = len(vocab) | |
# Initialize the model with the same parameters | |
hidden_dim = 256 # Ensure this matches your trained model | |
latent_dim = 64 # Ensure this matches your trained model | |
# Define the VAE class (same as in your training script) | |
class VAE(nn.Module): | |
def __init__(self, vocab_size: int, hidden_dim: int, latent_dim: int): | |
super(VAE, self).__init__() | |
self.vocab_size = vocab_size | |
self.hidden_dim = hidden_dim | |
self.latent_dim = latent_dim | |
self.encoder = nn.GRU(vocab_size, hidden_dim, batch_first=True) | |
self.fc_mu = nn.Linear(hidden_dim, latent_dim) | |
self.fc_logvar = nn.Linear(hidden_dim, latent_dim) | |
self.decoder = nn.GRU(vocab_size + latent_dim, hidden_dim, batch_first=True) | |
self.fc_output = nn.Linear(hidden_dim, vocab_size) | |
def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
_, h = self.encoder(x) | |
h = h.squeeze(0) | |
return self.fc_mu(h), self.fc_logvar(h) | |
def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor: | |
std = torch.exp(0.5 * logvar) | |
eps = torch.randn_like(std) | |
return mu + eps * std | |
def decode(self, z: torch.Tensor, max_length: int) -> torch.Tensor: | |
batch_size = z.size(0) | |
h = torch.zeros(1, batch_size, self.hidden_dim).to(z.device) | |
x = torch.zeros(batch_size, 1, self.vocab_size).to(z.device) | |
x[:, 0, vocab['<']] = 1 # Start token | |
outputs = [] | |
for _ in range(max_length): | |
z_input = z.unsqueeze(1) | |
decoder_input = torch.cat([x, z_input], dim=2) | |
output, h = self.decoder(decoder_input, h) | |
output = self.fc_output(output) | |
outputs.append(output) | |
x = torch.softmax(output, dim=-1) | |
return torch.cat(outputs, dim=1) | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
mu, logvar = self.encode(x) | |
z = self.reparameterize(mu, logvar) | |
return self.decode(z, x.size(1)), mu, logvar | |
model = VAE(vocab_size, hidden_dim, latent_dim) | |
model.load_state_dict(torch.load('vae_model.pth', map_location=device)) | |
model.to(device) | |
model.eval() | |
return model, vocab | |
# Function to generate molecules using VAE | |
def generate_smiles_vae(model, vocab, num_samples=10, max_length=100): | |
model.eval() | |
inv_vocab = {v: k for k, v in vocab.items()} | |
generated_smiles = [] | |
device = next(model.parameters()).device | |
with torch.no_grad(): | |
for _ in range(num_samples): | |
z = torch.randn(1, model.latent_dim).to(device) | |
x = torch.zeros(1, 1, model.vocab_size).to(device) | |
x[0, 0, vocab['<']] = 1 | |
h = torch.zeros(1, 1, model.hidden_dim).to(device) | |
smiles = '' | |
for _ in range(max_length): | |
z_input = z.unsqueeze(1) | |
decoder_input = torch.cat([x, z_input], dim=2) | |
output, h = model.decoder(decoder_input, h) | |
output = model.fc_output(output) | |
probs = torch.softmax(output.squeeze(0), dim=-1) | |
next_char = torch.multinomial(probs, 1).item() | |
if next_char == vocab['>']: | |
break | |
smiles += inv_vocab.get(next_char, '') | |
x = torch.zeros(1, 1, model.vocab_size).to(device) | |
x[0, 0, next_char] = 1 | |
generated_smiles.append(smiles) | |
return generated_smiles | |
# Function to post-process and validate SMILES strings | |
def enhanced_post_process_smiles(smiles: str) -> str: | |
smiles = smiles.replace('<', '').replace('>', '') | |
allowed_chars = set('CNOPSFIBrClcnops()[]=@+-#0123456789') | |
smiles = ''.join(c for c in smiles if c in allowed_chars) | |
# Balance parentheses | |
open_count = smiles.count('(') | |
close_count = smiles.count(')') | |
if open_count > close_count: | |
smiles += ')' * (open_count - close_count) | |
elif close_count > open_count: | |
smiles = '(' * (close_count - open_count) + smiles | |
# Replace invalid double bonds | |
smiles = smiles.replace('==', '=') | |
# Attempt to close unclosed rings | |
for i in range(1, 10): | |
if smiles.count(str(i)) % 2 != 0: | |
smiles += str(i) | |
return smiles | |
def validate_and_correct_smiles(smiles: str) -> Tuple[bool, str]: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is not None: | |
try: | |
Chem.SanitizeMol(mol) | |
return True, Chem.MolToSmiles(mol, isomericSmiles=True) | |
except: | |
pass | |
return False, smiles | |
# Function to analyze molecules | |
def analyze_molecules(smiles_list: List[str], training_smiles_set: set) -> Dict: | |
results = { | |
'total': len(smiles_list), | |
'valid': 0, | |
'invalid': 0, | |
'unique': 0, | |
'corrected': 0, | |
'novel': 0, | |
'valid_properties': [], | |
'novel_properties': [], | |
'invalid_smiles': [] | |
} | |
unique_smiles = set() | |
novel_smiles = set() | |
for smiles in smiles_list: | |
processed_smiles = enhanced_post_process_smiles(smiles) | |
is_valid, corrected_smiles = validate_and_correct_smiles(processed_smiles) | |
if is_valid: | |
results['valid'] += 1 | |
unique_smiles.add(corrected_smiles) | |
if corrected_smiles != processed_smiles: | |
results['corrected'] += 1 | |
mol = Chem.MolFromSmiles(corrected_smiles) | |
if mol: | |
props = { | |
'smiles': corrected_smiles, | |
'MolWt': Descriptors.ExactMolWt(mol), | |
'LogP': Descriptors.MolLogP(mol), | |
'NumHDonors': Descriptors.NumHDonors(mol), | |
'NumHAcceptors': Descriptors.NumHAcceptors(mol) | |
} | |
if corrected_smiles not in training_smiles_set: | |
novel_smiles.add(corrected_smiles) | |
results['novel'] += 1 | |
results['novel_properties'].append(props) | |
else: | |
results['valid_properties'].append(props) | |
else: | |
results['invalid'] += 1 | |
results['invalid_smiles'].append(smiles) | |
results['unique'] = len(unique_smiles) | |
return results | |
# Function to visualize molecules | |
def visualize_molecules(smiles_list: List[str], n: int = 5) -> Optional[Image.Image]: | |
valid_mols = [] | |
for smiles in smiles_list: | |
smiles = smiles.strip().strip('<>').strip() | |
if not smiles: | |
continue | |
try: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is not None: | |
valid_mols.append(mol) | |
if len(valid_mols) == n: | |
break | |
except Exception: | |
continue | |
if not valid_mols: | |
return None | |
try: | |
img = Draw.MolsToGridImage( | |
valid_mols, | |
molsPerRow=min(3, len(valid_mols)), | |
subImgSize=(200, 200), | |
legends=[f"Mol {i+1}" for i in range(len(valid_mols))] | |
) | |
return img | |
except Exception: | |
return None | |
# GCN and GIN model definitions | |
class GCN(torch.nn.Module): | |
"""Graph Convolutional Network class with 3 convolutional layers and a linear layer""" | |
def __init__(self, dim_h): | |
"""init method for GCN | |
Args: | |
dim_h (int): the dimension of hidden layers | |
""" | |
super().__init__() | |
self.conv1 = GCNConv(11, dim_h) | |
self.conv2 = GCNConv(dim_h, dim_h) | |
self.conv3 = GCNConv(dim_h, dim_h) | |
self.lin = torch.nn.Linear(dim_h, 1) | |
def forward(self, data): | |
e = data.edge_index | |
x = data.x | |
x = self.conv1(x, e) | |
x = x.relu() | |
x = self.conv2(x, e) | |
x = x.relu() | |
x = self.conv3(x, e) | |
x = global_mean_pool(x, data.batch) | |
x = F.dropout(x, p=0.5, training=self.training) | |
x = self.lin(x) | |
return x | |
class GIN(torch.nn.Module): | |
"""Graph Isomorphism Network class with 3 GINConv layers and 2 linear layers""" | |
def __init__(self, dim_h): | |
"""Initializing GIN class | |
Args: | |
dim_h (int): the dimension of hidden layers | |
""" | |
super(GIN, self).__init__() | |
nn1 = Sequential(Linear(11, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU()) | |
self.conv1 = GINConv(nn1) | |
nn2 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU()) | |
self.conv2 = GINConv(nn2) | |
nn3 = Sequential(Linear(dim_h, dim_h), BatchNorm1d(dim_h), ReLU(), Linear(dim_h, dim_h), ReLU()) | |
self.conv3 = GINConv(nn3) | |
self.lin1 = Linear(dim_h, dim_h) | |
self.lin2 = Linear(dim_h, 1) | |
def forward(self, data): | |
x = data.x | |
edge_index = data.edge_index | |
batch = data.batch | |
# Node embeddings | |
h = self.conv1(x, edge_index) | |
h = h.relu() | |
h = self.conv2(h, edge_index) | |
h = h.relu() | |
h = self.conv3(h, edge_index) | |
# Graph-level readout | |
h = global_add_pool(h, batch) | |
h = self.lin1(h) | |
h = h.relu() | |
h = F.dropout(h, p=0.5, training=self.training) | |
h = self.lin2(h) | |
return h | |
# Function to load GNN models | |
def load_gnn_models(device): | |
# Load GCN model | |
gcn_model = GCN(dim_h=128) | |
gcn_model.load_state_dict(torch.load("GCN_model.pth", map_location=device)) | |
gcn_model.to(device) | |
gcn_model.eval() | |
# Load GIN model | |
gin_model = GIN(dim_h=64) | |
gin_model.load_state_dict(torch.load("GIN_model.pth", map_location=device)) | |
gin_model.to(device) | |
gin_model.eval() | |
return gcn_model, gin_model | |
# Function to load normalization parameters | |
def load_data_norm(device): | |
data_norm = torch.load('data_norm.pth', map_location=device) | |
data_mean = data_norm['mean'] | |
data_std = data_norm['std'] | |
return data_mean, data_std | |
# Function to convert SMILES to Data object | |
def smiles_to_data(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return None | |
atoms = mol.GetAtoms() | |
num_atoms = len(atoms) | |
atom_type_list = ['H', 'C', 'N', 'O', 'F'] | |
hybridization_list = [Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3] | |
x = [] | |
for atom in atoms: | |
atom_type = atom.GetSymbol() | |
atom_type_feature = [int(atom_type == s) for s in atom_type_list] # 5 features | |
# Atom degree (scalar between 0 and 4) | |
degree = atom.GetDegree() | |
degree_feature = [degree / 4] # Normalize degree to [0,1] # 1 feature | |
# Formal charge | |
formal_charge = atom.GetFormalCharge() | |
formal_charge_feature = [formal_charge / 4] # Assume max formal charge is 4 # 1 feature | |
# Aromaticity | |
is_aromatic = atom.GetIsAromatic() | |
aromatic_feature = [int(is_aromatic)] # 1 feature | |
# Hybridization | |
hybridization = atom.GetHybridization() | |
hybridization_feature = [int(hybridization == hyb) for hyb in hybridization_list] # 3 features | |
# Total features: 5 + 1 +1 +1 +3 = 11 | |
atom_feature = atom_type_feature + degree_feature + formal_charge_feature + aromatic_feature + hybridization_feature | |
x.append(atom_feature) | |
x = torch.tensor(x, dtype=torch.float) | |
# Build edge indices | |
edge_index = [] | |
for bond in mol.GetBonds(): | |
i = bond.GetBeginAtomIdx() | |
j = bond.GetEndAtomIdx() | |
edge_index.append([i, j]) | |
edge_index.append([j, i]) # Since it's undirected | |
edge_index = torch.tensor(edge_index, dtype=torch.long).t().contiguous() | |
# Build batch tensor (since batch size is 1) | |
batch = torch.zeros(num_atoms, dtype=torch.long) | |
# Build Data object | |
data = Data(x=x, edge_index=edge_index, batch=batch) | |
return data | |
# Streamlit app | |
def main(): | |
st.set_page_config( | |
page_title="π§ͺ Molecule Generator and Property Predictor", | |
page_icon="π§ͺ", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
) | |
# Main Title and Description | |
st.title("π§ͺ Molecular Generation and Analysis using VAE and GNN") | |
st.markdown(""" | |
This application allows you to generate novel molecular structures using a Variational Autoencoder (VAE) model trained on the QM9 dataset. | |
You can also predict molecular properties using pre-trained Graph Neural Network (GNN) models (GCN and GIN). | |
""") | |
# Initialize session state variables | |
if 'analysis' not in st.session_state: | |
st.session_state.analysis = None | |
if 'generated_smiles' not in st.session_state: | |
st.session_state.generated_smiles = [] | |
if 'vae_generated' not in st.session_state: | |
st.session_state.vae_generated = False | |
# Sidebar configuration | |
st.sidebar.title("π§ Configuration") | |
st.sidebar.markdown("Adjust the settings below to generate molecules or predict properties.") | |
# Load training data and canonicalize SMILES | |
def load_training_data(): | |
df = pd.read_csv("qm9.csv") | |
smiles_list_raw = df['smiles'].tolist() | |
# Canonicalize SMILES for accurate comparison | |
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(s), isomericSmiles=True) for s in smiles_list_raw] | |
return set(smiles_list) | |
training_smiles_set = load_training_data() | |
# Device selection | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Model selection | |
st.sidebar.title("π Model Selection") | |
model_option = st.sidebar.selectbox("Choose a functionality", ("Generate Molecules (VAE)", "Predict Property (GNN)")) | |
if model_option == "Generate Molecules (VAE)": | |
# Number of samples | |
num_samples = st.sidebar.slider("Number of Molecules to Generate", min_value=5, max_value=500, value=50, step=5) | |
# Random seed | |
seed = st.sidebar.number_input("Random Seed", value=42, step=1) | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
if st.sidebar.button("π Generate Molecules"): | |
with st.spinner("Generating molecules..."): | |
# Load VAE model | |
model, vocab = load_vae_model(device) | |
generated_smiles = generate_smiles_vae(model, vocab, num_samples=num_samples) | |
# Analyze molecules | |
analysis = analyze_molecules(generated_smiles, training_smiles_set) | |
# Store results in session state | |
st.session_state.generated_smiles = generated_smiles | |
st.session_state.analysis = analysis | |
st.session_state.vae_generated = True | |
# Display summary | |
st.success("β Molecule generation completed!") | |
st.subheader("Summary of Generated Molecules") | |
col1, col2, col3, col4 = st.columns(4) | |
col1.metric("Total Generated", analysis['total']) | |
col2.metric("Valid Molecules", f"{analysis['valid']} ({(analysis['valid']/analysis['total'])*100:.2f}%)") | |
col3.metric("Unique Molecules", f"{analysis['unique']} ({(analysis['unique']/analysis['total'])*100:.2f}%)") | |
col4.metric("Corrected Molecules", f"{analysis['corrected']} ({(analysis['corrected']/analysis['total'])*100:.2f}%)") | |
col1, col2 = st.columns(2) | |
col1.metric("Novel Molecules", f"{analysis['novel']} ({(analysis['novel']/analysis['total'])*100:.2f}%)") | |
col2.metric("Invalid Molecules", f"{analysis['invalid']} ({(analysis['invalid']/analysis['total'])*100:.2f}%)") | |
# Display properties | |
if analysis['valid_properties'] or analysis['novel_properties']: | |
st.subheader("Properties of Generated Molecules") | |
tab1, tab2 = st.tabs(["β Valid Molecules", "π Novel Molecules"]) | |
with tab1: | |
if analysis['valid_properties']: | |
df_valid = pd.DataFrame(analysis['valid_properties']) | |
st.dataframe(df_valid) | |
# Visualize valid molecules (limit to 9 for performance) | |
st.subheader("Sample Valid Molecules") | |
mol_image_valid = visualize_molecules([prop['smiles'] for prop in analysis['valid_properties']], n=9) | |
if mol_image_valid: | |
st.image(mol_image_valid) | |
else: | |
st.write("No valid molecules to display.") | |
else: | |
st.write("No valid molecules found.") | |
with tab2: | |
if analysis['novel_properties']: | |
df_novel = pd.DataFrame(analysis['novel_properties']) | |
st.dataframe(df_novel) | |
# Visualize novel molecules (limit to 9 for performance) | |
st.subheader("Sample Novel Molecules") | |
mol_image_novel = visualize_molecules([prop['smiles'] for prop in analysis['novel_properties']], n=9) | |
if mol_image_novel: | |
st.image(mol_image_novel) | |
else: | |
st.write("No novel molecules to display.") | |
else: | |
st.write("No novel molecules found.") | |
# Property distributions | |
st.subheader("Property Distributions") | |
fig, axs = plt.subplots(2, 2, figsize=(14, 10)) | |
if analysis['valid_properties']: | |
sns.histplot(df_valid['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='skyblue', label='Valid') | |
if analysis['novel_properties']: | |
sns.histplot(df_novel['MolWt'], bins=20, ax=axs[0, 0], kde=True, color='orange', label='Novel') | |
axs[0, 0].set_title('Molecular Weight Distribution') | |
axs[0, 0].legend() | |
if analysis['valid_properties']: | |
sns.histplot(df_valid['LogP'], bins=20, ax=axs[0, 1], kde=True, color='skyblue', label='Valid') | |
if analysis['novel_properties']: | |
sns.histplot(df_novel['LogP'], bins=20, ax=axs[0, 1], kde=True, color='orange', label='Novel') | |
axs[0, 1].set_title('LogP Distribution') | |
axs[0, 1].legend() | |
if analysis['valid_properties']: | |
sns.histplot(df_valid['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(), | |
df_novel['NumHDonors'].max()) + 2), | |
ax=axs[1, 0], kde=False, color='skyblue', label='Valid') | |
if analysis['novel_properties']: | |
sns.histplot(df_novel['NumHDonors'], bins=range(0, max(df_valid['NumHDonors'].max(), | |
df_novel['NumHDonors'].max()) + 2), | |
ax=axs[1, 0], kde=False, color='orange', label='Novel') | |
axs[1, 0].set_title('Number of H Donors') | |
axs[1, 0].legend() | |
if analysis['valid_properties']: | |
sns.histplot(df_valid['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(), | |
df_novel['NumHAcceptors'].max()) + 2), | |
ax=axs[1, 1], kde=False, color='skyblue', label='Valid') | |
if analysis['novel_properties']: | |
sns.histplot(df_novel['NumHAcceptors'], bins=range(0, max(df_valid['NumHAcceptors'].max(), | |
df_novel['NumHAcceptors'].max()) + 2), | |
ax=axs[1, 1], kde=False, color='orange', label='Novel') | |
axs[1, 1].set_title('Number of H Acceptors') | |
axs[1, 1].legend() | |
plt.tight_layout() | |
st.pyplot(fig) | |
# Download options | |
csv_valid = df_valid.to_csv(index=False).encode('utf-8') | |
csv_novel = df_novel.to_csv(index=False).encode('utf-8') | |
col1, col2 = st.columns(2) | |
with col1: | |
st.download_button( | |
label="πΎ Download Valid Molecules CSV", | |
data=csv_valid, | |
file_name='valid_molecules.csv', | |
mime='text/csv' | |
) | |
with col2: | |
st.download_button( | |
label="πΎ Download Novel Molecules CSV", | |
data=csv_novel, | |
file_name='novel_molecules.csv', | |
mime='text/csv' | |
) | |
else: | |
st.warning("No valid or novel molecules were generated.") | |
elif model_option == "Predict Property (GNN)": | |
# Load GNN models | |
with st.spinner("Loading GNN models..."): | |
gcn_model, gin_model = load_gnn_models(device) | |
# Load normalization parameters | |
data_mean, data_std = load_data_norm(device) | |
# GNN Model selection | |
gnn_model_option = st.sidebar.selectbox("Choose a GNN model", ("GCN", "GIN")) | |
st.subheader("π Predict Molecular Property using GNN") | |
st.markdown(""" | |
Input a SMILES string to predict the dipole moment using the selected GNN model. | |
""") | |
# User inputs a SMILES string | |
user_smiles = st.text_input("Enter a SMILES string for property prediction:", "") | |
if user_smiles: | |
data = smiles_to_data(user_smiles) | |
if data: | |
data = data.to(device) | |
if gnn_model_option == "GCN": | |
prediction = gcn_model(data) | |
prediction = prediction.item() | |
elif gnn_model_option == "GIN": | |
prediction = gin_model(data) | |
prediction = prediction.item() | |
# Unnormalize the prediction | |
prediction = prediction * data_std.item() + data_mean.item() | |
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}") | |
# Display molecule | |
mol = Chem.MolFromSmiles(user_smiles) | |
if mol: | |
st.subheader("Molecular Structure") | |
st.image(Draw.MolToImage(mol, size=(300, 300))) | |
else: | |
st.error("β Invalid SMILES string.") | |
st.markdown("---") | |
st.markdown("### Or select a molecule from the generated molecules (if any).") | |
# Check if molecules have been generated | |
if st.session_state.vae_generated and st.session_state.analysis is not None: | |
# Combine valid and novel properties | |
all_properties = st.session_state.analysis['valid_properties'] + st.session_state.analysis['novel_properties'] | |
if all_properties: | |
smiles_options = [prop['smiles'] for prop in all_properties] | |
selected_smiles = st.selectbox("Select a molecule", smiles_options) | |
if selected_smiles: | |
data = smiles_to_data(selected_smiles) | |
if data: | |
data = data.to(device) | |
if gnn_model_option == "GCN": | |
prediction = gcn_model(data) | |
prediction = prediction.item() | |
elif gnn_model_option == "GIN": | |
prediction = gin_model(data) | |
prediction = prediction.item() | |
# Unnormalize the prediction | |
prediction = prediction * data_std.item() + data_mean.item() | |
st.success(f"**Predicted Dipole Moment ({gnn_model_option}):** {prediction:.4f}") | |
# Display molecule | |
mol = Chem.MolFromSmiles(selected_smiles) | |
if mol: | |
st.subheader("Molecular Structure") | |
st.image(Draw.MolToImage(mol, size=(300, 300))) | |
else: | |
st.error("β Invalid SMILES string.") | |
else: | |
st.info("π No valid or novel molecules available.") | |
else: | |
st.info("π No generated molecules available. Generate molecules using the VAE first.") | |
# About section | |
st.sidebar.title("βΉοΈ About") | |
st.sidebar.info(""" | |
**Molecule Generator and Property Predictor App** | |
This app uses a Variational Autoencoder (VAE) model and Graph Neural Networks (GNNs) to generate novel molecular structures and predict molecular properties. | |
- **Developed by**: Arjun, Kaustubh, and Nachiket | |
- **Hugging Face Repository**: [Your Hugging Face Repository](https://huggingface.co/YourRepositoryLink) | |
""") | |
# Hide Streamlit footer and header | |
hide_streamlit_style = """ | |
<style> | |
footer {visibility: hidden;} | |
header {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Run the app | |
if __name__ == "__main__": | |
main() | |