Realcat's picture
add: rdd sparse and dense match
1b369eb
# ALIKE: https://github.com/Shiaoming/ALIKE
import torch
from torch import nn
import numpy as np
import torch.nn.functional as F
# coordinates system
# ------------------------------> [ x: range=-1.0~1.0; w: range=0~W ]
# | -----------------------------
# | | |
# | | |
# | | |
# | | image |
# | | |
# | | |
# | | |
# | |---------------------------|
# v
# [ y: range=-1.0~1.0; h: range=0~H ]
def simple_nms(scores, nms_radius: int):
""" Fast Non-maximum suppression to remove nearby points """
assert (nms_radius >= 0)
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class InterpolateSparse2d(nn.Module):
""" Efficiently interpolate tensor at given sparse 2D positions. """
def __init__(self, mode = 'bicubic', align_corners = False):
super().__init__()
self.mode = mode
self.align_corners = align_corners
def normgrid(self, x, H, W):
""" Normalize coords to [-1,1]. """
return 2. * (x/(torch.tensor([W-1, H-1], device = x.device, dtype = x.dtype))) - 1.
def forward(self, x, pos, H, W):
"""
Input
x: [B, C, H, W] feature tensor
pos: [B, N, 2] tensor of positions
H, W: int, original resolution of input 2d positions -- used in normalization [-1,1]
Returns
[B, N, C] sampled channels at 2d positions
"""
grid = self.normgrid(pos, H, W).unsqueeze(-2).to(x.dtype)
x = F.grid_sample(x, grid, mode = self.mode , align_corners = False)
return x.permute(0,2,3,1).squeeze(-2)
class SoftDetect(nn.Module):
def __init__(self, radius=2, top_k=0, scores_th=0.2, n_limit=20000):
"""
Args:
radius: soft detection radius, kernel size is (2 * radius + 1)
top_k: top_k > 0: return top k keypoints
scores_th: top_k <= 0 threshold mode: scores_th > 0: return keypoints with scores>scores_th
else: return keypoints with scores > scores.mean()
n_limit: max number of keypoint in threshold mode
"""
super().__init__()
self.radius = radius
self.top_k = top_k
self.scores_th = scores_th
self.n_limit = n_limit
self.kernel_size = 2 * self.radius + 1
self.temperature = 0.1 # tuned temperature
self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)
self.sample_descriptor = InterpolateSparse2d('bicubic')
# local xy grid
x = torch.linspace(-self.radius, self.radius, self.kernel_size)
# (kernel_size*kernel_size) x 2 : (w,h)
self.hw_grid = torch.stack(torch.meshgrid([x, x])).view(2, -1).t()[:, [1, 0]]
def detect_keypoints(self, scores_map, normalized_coordinates=True):
b, c, h, w = scores_map.shape
scores_nograd = scores_map.detach()
# nms_scores = simple_nms(scores_nograd, self.radius)
nms_scores = simple_nms(scores_nograd, 2)
# remove border
nms_scores[:, :, :self.radius + 1, :] = 0
nms_scores[:, :, :, :self.radius + 1] = 0
nms_scores[:, :, h - self.radius:, :] = 0
nms_scores[:, :, :, w - self.radius:] = 0
# detect keypoints without grad
if self.top_k > 0:
topk = torch.topk(nms_scores.view(b, -1), self.top_k)
indices_keypoints = topk.indices # B x top_k
else:
if self.scores_th > 0:
masks = nms_scores > self.scores_th
if masks.sum() == 0:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
else:
th = scores_nograd.reshape(b, -1).mean(dim=1) # th = self.scores_th
masks = nms_scores > th.reshape(b, 1, 1, 1)
masks = masks.reshape(b, -1)
indices_keypoints = [] # list, B x (any size)
scores_view = scores_nograd.reshape(b, -1)
for mask, scores in zip(masks, scores_view):
indices = mask.nonzero(as_tuple=False)[:, 0]
if len(indices) > self.n_limit:
kpts_sc = scores[indices]
sort_idx = kpts_sc.sort(descending=True)[1]
sel_idx = sort_idx[:self.n_limit]
indices = indices[sel_idx]
indices_keypoints.append(indices)
# detect soft keypoints with grad backpropagation
patches = self.unfold(scores_map) # B x (kernel**2) x (H*W)
self.hw_grid = self.hw_grid.to(patches) # to device
keypoints = []
scoredispersitys = []
kptscores = []
for b_idx in range(b):
patch = patches[b_idx].t() # (H*W) x (kernel**2)
indices_kpt = indices_keypoints[b_idx] # one dimension vector, say its size is M
patch_scores = patch[indices_kpt] # M x (kernel**2)
# max is detached to prevent undesired backprop loops in the graph
max_v = patch_scores.max(dim=1).values.detach()[:, None]
x_exp = ((patch_scores - max_v) / self.temperature).exp() # M * (kernel**2), in [0, 1]
# \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
xy_residual = x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None] # Soft-argmax, Mx2
hw_grid_dist2 = torch.norm((self.hw_grid[None, :, :] - xy_residual[:, None, :]) / self.radius,
dim=-1) ** 2
scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)
# compute result keypoints
keypoints_xy_nms = torch.stack([indices_kpt % w, indices_kpt // w], dim=1) # Mx2
keypoints_xy = keypoints_xy_nms + xy_residual
if normalized_coordinates:
keypoints_xy = keypoints_xy / keypoints_xy.new_tensor([w - 1, h - 1]) * 2 - 1 # (w,h) -> (-1~1,-1~1)
kptscore = torch.nn.functional.grid_sample(scores_map[b_idx].unsqueeze(0), keypoints_xy.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, 0, 0, :] # CxN
keypoints.append(keypoints_xy)
scoredispersitys.append(scoredispersity)
kptscores.append(kptscore)
return keypoints, scoredispersitys, kptscores
def forward(self, scores_map, normalized_coordinates=True):
"""
:param scores_map: Bx1xHxW
:return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1.0 ~ 1.0
"""
B, _, H, W = scores_map.shape
keypoints, scoredispersitys, kptscores = self.detect_keypoints(scores_map,
normalized_coordinates)
# keypoints: B M 2
# scoredispersitys:
return keypoints, kptscores, scoredispersitys
import torch
import torch.nn as nn
class Detect(nn.Module):
def __init__(self, stride=4, top_k=0, scores_th=0, n_limit=20000):
super().__init__()
self.stride = stride
self.top_k = top_k
self.scores_th = scores_th
self.n_limit = n_limit
def forward(self, scores, coords, w, h):
"""
scores: B x N x 1 (keypoint confidence scores)
coords: B x N x 2 (offsets within stride x stride window)
w, h: Image dimensions
"""
b, n, _ = scores.shape
kpts_list = []
scores_list = []
for b_idx in range(b):
score = scores[b_idx].squeeze(-1) # Shape: (N,)
coord = coords[b_idx] # Shape: (N, 2)
# Apply score thresholding
if self.scores_th >= 0:
valid = score > self.scores_th
else:
valid = score > score.mean()
valid_indices = valid.nonzero(as_tuple=True)[0] # Get valid indices
if valid_indices.numel() == 0:
kpts_list.append(torch.empty((0, 2), device=scores.device))
scores_list.append(torch.empty((0,), device=scores.device))
continue
# Compute keypoint locations in original image space
i_ids = valid_indices # Indices where keypoints exist
kpts = torch.stack([i_ids % w, i_ids // w], dim=1).to(torch.float) * self.stride # Grid position
kpts += coord[i_ids] * self.stride # Apply offset
# Normalize keypoints to [-1, 1] range
kpts = (kpts / torch.tensor([w - 1, h - 1], device=kpts.device, dtype=kpts.dtype)) * 2 - 1
# Filter top-k keypoints if needed
scores_valid = score[valid_indices]
if self.top_k > 0 and len(kpts) > self.top_k:
topk = torch.topk(scores_valid, self.top_k, dim=0)
kpts = kpts[topk.indices]
scores_valid = topk.values
elif self.top_k < 0:
if len(kpts) > self.n_limit:
sorted_idx = scores_valid.argsort(descending=True)[:self.n_limit]
kpts = kpts[sorted_idx]
scores_valid = scores_valid[sorted_idx]
kpts_list.append(kpts)
scores_list.append(scores_valid)
return kpts_list, scores_list