File size: 3,735 Bytes
659b71a
 
 
 
7496a0d
 
659b71a
51aa4b0
7496a0d
 
 
 
 
51aa4b0
7496a0d
 
 
 
 
51aa4b0
7496a0d
 
659b71a
7496a0d
659b71a
c9ed9d2
7496a0d
 
 
659b71a
c9ed9d2
659b71a
bdca1f2
 
 
 
9cca1b7
 
 
7496a0d
c9ed9d2
18fac15
 
 
 
7496a0d
18fac15
 
 
 
 
5f56fa3
 
7496a0d
659b71a
18fac15
99b4e4a
 
18fac15
99b4e4a
7496a0d
659b71a
5f56fa3
659b71a
7496a0d
38b1507
 
9f10f4b
38b1507
 
7496a0d
 
fdb0ac9
659b71a
7496a0d
 
 
 
659b71a
 
7496a0d
 
659b71a
7496a0d
 
 
 
 
 
 
 
 
 
 
 
659b71a
a28b6b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
from keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import os

# Load custom CTC Layer if necessary
class CTCLayer(tf.keras.layers.Layer):
    def __init__(self, name=None):
        super().__init__(name=name)
        self.loss_fn = tf.keras.backend.ctc_batch_cost

    def call(self, y_true, y_pred, input_length, label_length):
        # Compute the training-time loss value and add it
        # to the layer using `self.add_loss()`.
        loss = self.loss_fn(y_true, y_pred, input_length, label_length)
        self.add_loss(loss)

        # On test time, just return the computed loss
        return loss

# Load the trained model with a custom CTC layer if needed
@st.cache_resource
def load_model():
    model_path = "model_ocr.h5"  # Update with the correct model file path
    model = tf.keras.models.load_model(model_path, custom_objects={"CTCLayer": CTCLayer})
    return model

model = load_model()


# Menambahkan definisi img_width dan img_height
img_width, img_height = 200, 50  # Ganti sesuai dimensi input gambar yang digunakan oleh model Anda

# Definisikan max_length (misalnya panjang label maksimal)
max_length = 50  # Ganti sesuai dengan panjang label teks maksimal yang diinginkan

# Function to preprocess the image
def prepare_image(img):
    # Resize gambar sesuai dengan ukuran yang diharapkan oleh model
    img = img.resize((img_width, img_height))  # Resize to (200, 50)
    
    # Konversi gambar ke array
    img_array = img_to_array(img)
    
    # Tambahkan dimensi untuk batch (menjadi 1, 50, 200) dan reshape ke bentuk (1, 50, 200, 1)
    img_array = np.expand_dims(img_array, axis=0)  # Tambahkan dimensi untuk batch
    img_array = np.transpose(img_array, (0, 2, 1, 3))  # Mengubah urutan dimensi menjadi (1, 200, 50, 1)
    
    # Menyusun input_length dan label_length untuk model OCR
    input_length = np.ones((img_array.shape[0], 1)) * (img_width // 4)  # Sesuaikan dengan input panjang
    label_length = np.ones((img_array.shape[0], 1)) * max_length  # Example label length

    # Menambahkan input dummy untuk label (jika perlu untuk prediksi)
    dummy_label = np.zeros((img_array.shape[0], max_length))  # Input dummy jika model mengharapkan label input
    
    # Melakukan prediksi
    preds = model.predict([img_array, input_length, label_length, dummy_label])  # Berikan 4 input
    pred_texts = decode_batch_predictions(preds)

    return pred_texts, preds

def decode_batch_predictions(pred):
    # This function should convert the predictions (logits) to text
    # Modify this function based on your specific character map
    pred_texts = []
    for i in range(pred.shape[0]):
        pred_text = ''.join([characters[int(c)] for c in pred[i] if c != -1])  # Map to characters
        pred_texts.append(pred_text)
    return pred_texts
    
def run():
    st.title("OCR Model Deployment")
    
    # Upload image
    img_file = st.file_uploader("Choose an Image", type=["jpg", "png"])

    if img_file is not None:
        img = Image.open(img_file).convert('L')  # Convert to grayscale if needed
        st.image(img, use_column_width=True)

        # Save the uploaded image
        upload_dir = './upload_images/'
        os.makedirs(upload_dir, exist_ok=True)
        save_image_path = os.path.join(upload_dir, img_file.name)
        with open(save_image_path, "wb") as f:
            f.write(img_file.getbuffer())

        # Process the image and make prediction
        pred_texts = prepare_image(img)
        
        # Show predicted text
        st.success(f"**Predicted Text: {pred_texts[0]}**")

if __name__ == "__main__":
    run()