File size: 4,563 Bytes
be3a2ca
a928ae7
c02416d
f081ce4
a928ae7
 
 
 
 
 
 
be3a2ca
 
a928ae7
16af574
a928ae7
 
6e9858c
16af574
 
a928ae7
 
 
 
 
 
 
 
 
 
b2cfabe
 
f081ce4
b2cfabe
 
a928ae7
b2cfabe
 
a928ae7
b2cfabe
 
 
 
 
 
 
a928ae7
b2cfabe
 
a928ae7
 
 
4077f41
b2cfabe
 
 
 
 
 
a928ae7
 
b2cfabe
a928ae7
 
 
b2cfabe
a928ae7
 
 
b2cfabe
 
 
 
 
 
 
a928ae7
 
b2cfabe
a928ae7
 
b2cfabe
 
a928ae7
b2cfabe
a928ae7
b2cfabe
 
a928ae7
b2cfabe
 
a928ae7
b2cfabe
 
 
 
 
a928ae7
 
 
b2cfabe
 
 
 
a928ae7
 
 
 
 
 
 
4314dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a928ae7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from fastapi import FastAPI
import os

import pymupdf
from pptx import Presentation  # python-pptx for PowerPoint
from sentence_transformers import SentenceTransformer  # Text embeddings
import torch
from transformers import CLIPProcessor, CLIPModel  # Image embeddings
from PIL import Image
import chromadb


app = FastAPI()
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")
pdf_file="Sutures and Suturing techniques.pdf"
pptx_file="impalnt 1.pptx"


collection = client.get_collection(name="knowledge_base")

# Initialize models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Folder for extracted images
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)
### Step 1: Extract Text from PDF ###
def extract_text_from_pdf(pdf_path):
    text = ""
    doc = pymupdf.open(pdf_path)
    for page in doc:
        text += page.get_text() + "\n"
    return text.strip()


### Step 2: Extract Text from PowerPoint ###
def extract_text_from_pptx(pptx_path):
    text = ""
    prs = Presentation(pptx_path)
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text.strip()


### Step 3: Extract Images from PDF ###
def extract_images_from_pdf(pdf_path):
    images = []
    doc = pymupdf.open(pdf_path)
    for i, page in enumerate(doc):
        for img_index, img in enumerate(page.get_images(full=True)):
            xref = img[0]
            image = doc.extract_image(xref)
            img_bytes = image["image"]
            img_ext = image["ext"]
            img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{img_ext}"
            with open(img_path, "wb") as f:
                f.write(img_bytes)
            images.append(img_path)
    return images


### Step 4: Extract Images from PowerPoint ###
def extract_images_from_pptx(pptx_path):
    images = []
    prs = Presentation(pptx_path)
    for i, slide in enumerate(prs.slides):
        for shape in slide.shapes:
            if shape.shape_type == 13:  # Picture shape type
                image = shape.image
                img_bytes = image.blob
                img_ext = image.ext
                img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{img_ext}"
                with open(img_path, "wb") as f:
                    f.write(img_bytes)
                images.append(img_path)
    return images


### Step 5: Convert Text to Embeddings ###
def get_text_embedding(text):
    return text_model.encode(text).tolist()


### Step 6: Convert Images to Embeddings ###
def get_image_embedding(image_path):
    image = Image.open(image_path)
    inputs = clip_processor(images=image, return_tensors="pt")
    with torch.no_grad():
        embedding = clip_model.get_image_features(**inputs)
    return embedding.squeeze().tolist()


### Step 7: Store Data in ChromaDB ###
def store_data(texts, image_paths):
    # Store text embeddings
    for i, text in enumerate(texts):
        text_embedding = get_text_embedding(text)
        collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])

    # Store image embeddings
    for j, image_path in enumerate(image_paths):
        image_embedding = get_image_embedding(image_path)
        collection.add(ids=[f"image_{j}"], embeddings=[image_embedding], documents=[image_path])

    print("Data stored successfully!")

### Step 8: Process and Store from Files ###
def process_and_store(pdf_path=None, pptx_path=None):
    texts, images = [], []

    if pdf_path:
        print(f"Processing PDF: {pdf_path}")
        texts.append(extract_text_from_pdf(pdf_path))
        images.extend(extract_images_from_pdf(pdf_path))

    if pptx_path:
        print(f"Processing PPTX: {pptx_path}")
        texts.append(extract_text_from_pptx(pptx_path))
        images.extend(extract_images_from_pptx(pptx_path))

    store_data(texts, images)



process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
@app.get("/")
def greet_json():
    
    return {"Hello": "World!"}

@app.get("/test")
def greet_json():
    return {"Hello": "Redmind!"}

@app.get("/search/")
def search(query: str):
    query_embedding = get_text_embedding(query)
    results = collection.query(
        query_embeddings=[query_embedding],
        n_results=5
    )
    return {"results": results["documents"]}