File size: 10,449 Bytes
1cb21d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from fastapi import FastAPI
import os
import pymupdf  # PyMuPDF
from pptx import Presentation
from sentence_transformers import SentenceTransformer
import torch
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA

app = FastAPI()

# Initialize ChromaDB
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")

# File Paths
pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"

# Initialize Embedding Models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Image Storage Folder
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)

# Extract Text from PDF
def extract_text_from_pdf(pdf_path):
    try:
        doc = pymupdf.open(pdf_path)
        text = " ".join(page.get_text() for page in doc)
        return text.strip() if text else None
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
        return None

# Extract Text from PPTX
def extract_text_from_pptx(pptx_path):
    try:
        prs = Presentation(pptx_path)
        text = " ".join(
            shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
        )
        return text.strip() if text else None
    except Exception as e:
        print(f"Error extracting text from PPTX: {e}")
        return None

# Extract Images from PDF
def extract_images_from_pdf(pdf_path):
    try:
        doc = pymupdf.open(pdf_path)
        images = []
        for i, page in enumerate(doc):
            for img_index, img in enumerate(page.get_images(full=True)):
                xref = img[0]
                image = doc.extract_image(xref)
                img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
                with open(img_path, "wb") as f:
                    f.write(image["image"])
                images.append(img_path)
        return images
    except Exception as e:
        print(f"Error extracting images from PDF: {e}")
        return []

# Extract Images from PPTX
def extract_images_from_pptx(pptx_path):
    try:
        images = []
        prs = Presentation(pptx_path)
        for i, slide in enumerate(prs.slides):
            for shape in slide.shapes:
                if shape.shape_type == 13:
                    img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
                    with open(img_path, "wb") as f:
                        f.write(shape.image.blob)
                    images.append(img_path)
        return images
    except Exception as e:
        print(f"Error extracting images from PPTX: {e}")
        return []

# Convert Text to Embeddings
def get_text_embedding(text):
    return text_model.encode(text).tolist()

# Preload PCA instance globally (to maintain consistency across calls)
pca = PCA(n_components=384)

def get_image_embedding(image_path):
    try:
        # Load the image
        image = Image.open(image_path)
        inputs = processor(images=image, return_tensors="pt")
        
        # Extract image embeddings
        with torch.no_grad():
            image_embedding = model.get_image_features(**inputs).numpy().flatten()
        
         # Print the actual embedding dimension
        print(f"Image embedding shape: {image_embedding.shape}")

        """ # CASE 1: Embedding is already 384-dimensional ✅
        if len(image_embedding) == 384:
            return image_embedding.tolist()

        # CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅
        elif len(image_embedding) > 384:
            
            pca = PCA(n_components=384, svd_solver='auto')  # Auto solver for stability
            image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
            print(f"Reduced image embedding shape: {image_embedding.shape}")
           

        # CASE 3: Embedding is smaller than 384 → Apply Padding ❌
        else:
            padding = np.zeros(384 - len(image_embedding))  # Create padding vector
            image_embedding = np.concatenate((image_embedding, padding))  # Append padding"""
         # Truncate to 384 dimensions
        image_embedding = image_embedding[:384]

        # Print the final embedding shape
        print(f"Final Image embedding shape: {image_embedding.shape}")
        
        return image_embedding.tolist()
    
    except Exception as e:
        print(f"❌ Error generating image embedding: {e}")
        return None

# Store Data in ChromaDB
def store_data(texts, image_paths):
    for i, text in enumerate(texts):
        if text:
            text_embedding = get_text_embedding(text)
            if len(text_embedding) == 384:
                collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
    
    all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
    
    if all_embeddings:
        all_embeddings = np.array(all_embeddings)
        
        # Apply PCA only if necessary
        if all_embeddings.shape[1] != 384:
            pca = PCA(n_components=384)
            all_embeddings = pca.fit_transform(all_embeddings)
        
        for j, img_path in enumerate(image_paths):
            collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
    
    print("Data stored successfully!")

# Process and Store from Files
def process_and_store(pdf_path=None, pptx_path=None):
    texts, images = [], []
    if pdf_path:
        pdf_text = extract_text_from_pdf(pdf_path)
        if pdf_text:
            texts.append(pdf_text)
        images.extend(extract_images_from_pdf(pdf_path))
    if pptx_path:
        pptx_text = extract_text_from_pptx(pptx_path)
        if pptx_text:
            texts.append(pptx_text)
        images.extend(extract_images_from_pptx(pptx_path))
    store_data(texts, images)



# FastAPI Endpoints
@app.get("/")
def greet_json():
    # Run Data Processing
    process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
    return {"Document store": "created!"}

@app.get("/retrieval")
def retrieval(query: str):
    try:
        query_embedding = get_text_embedding(query)
        results = collection.query(query_embeddings=[query_embedding], n_results=5)
        #return {"results": results.get("documents", [])}
         # Set a similarity threshold (adjust as needed)
        SIMILARITY_THRESHOLD = 0.7
        
        # Extract documents and similarity scores
        documents = results.get("documents", [[]])[0]  # Ensure we get the first list
        distances = results.get("distances", [[]])[0]  # Ensure we get the first list

        # Filter results based on similarity threshold
        filtered_results = [
            doc for doc, score in zip(documents, distances) if score >= SIMILARITY_THRESHOLD
        ]

        # Return filtered results or indicate no match found
        if filtered_results:
            return {"results": filtered_results}
        else:
            return {"results": "No relevant match found in ChromaDB."}
    except Exception as e:
        return {"error": str(e)}

import pandas as pd
from io import StringIO 
import os
import base64
@app.get("/save_file_dify")
def save_file_dify(csv_data: str):    
    
    # Split into lines
    lines = csv_data.split("\n")

    # Find the max number of columns
    max_cols = max(line.count(",") + 1 for line in lines if line.strip())

    # Normalize all rows to have the same number of columns
    fixed_lines = [line + "," * (max_cols - line.count(",") - 1) for line in lines]

    # Reconstruct CSV string
    fixed_csv_data = "\n".join(fixed_lines)
    
    # Convert CSV string to DataFrame
    df = pd.read_csv(StringIO(fixed_csv_data))

    
    #save in dify dataset and return download link
    download_link = get_download_link_dify(df)
        
    return download_link
    

def get_download_link_dify(df):
    # code to save file in dify framework
    import requests

    # API Configuration
    BASE_URL = "http://redmindgpt.redmindtechnologies.com:81/v1"
    DATASET_ID = "084ae979-d101-414b-8854-9bbf5d3a442e" 
    API_KEY = "dataset-feqz5KrqHkFRdWbh2DInt58L"  

    dataset_name = 'output_dataset'
    # Endpoint URL
    url = f"{BASE_URL}/datasets/{DATASET_ID}/document/create-by-file"
    print(url)
    # Headers
    headers = {
        "Authorization": f"Bearer {API_KEY}"
    }

    # Data payload (form data as a plain text string)
    data_payload = {
        "data": """
        {
            "indexing_technique": "high_quality",
            "process_rule": {
                "rules": {
                    "pre_processing_rules": [
                        {"id": "remove_extra_spaces", "enabled": true},
                        {"id": "remove_urls_emails", "enabled": true}
                    ],
                    "segmentation": {
                        "separator": "###",
                        "max_tokens": 500
                    }
                },
                "mode": "custom"
            }
        }
        """
    }

    # Convert DataFrame to binary (in-memory)
    file_buffer = dataframe_to_binary(df)
    
    files = {
        "file": ("output.xlsx", file_buffer, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
    }

    # Send the POST request
    response = requests.post(url, headers=headers, data=data_payload, files=files)
    print(response)
    data = response.json()
    document_id = data['document']['id']

    # code to get download_url
    url = f"http://redmindgpt.redmindtechnologies.com:81/v1/datasets/{DATASET_ID}/documents/{document_id}/upload-file"
   
    response = requests.get(url, headers=headers)
    print(response)
    
    download_url = response.json().get("download_url")
    download_url = download_url.replace("download/","")
    return download_url

def dataframe_to_binary(df):
    import io
    # Create a BytesIO stream
    output = io.BytesIO()
    
    # Write the DataFrame to this in-memory buffer as an Excel file
    df.to_excel(output, index=False, engine="openpyxl")
    
    # Move the cursor to the beginning of the stream
    output.seek(0)
    
    return output