Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import os | |
import pymupdf | |
from pptx import Presentation # python-pptx for PowerPoint | |
from sentence_transformers import SentenceTransformer # Text embeddings | |
import torch | |
from transformers import CLIPProcessor, CLIPModel # Image embeddings | |
from PIL import Image | |
import chromadb | |
app = FastAPI() | |
client = chromadb.PersistentClient(path="/data/chroma_db") | |
collection = client.get_or_create_collection(name="knowledge_base") | |
pdf_file="Sutures and Suturing techniques.pdf" | |
pptx_file="impalnt 1.pptx" | |
collection = client.get_collection(name="knowledge_base") | |
# Initialize models | |
text_model = SentenceTransformer('all-MiniLM-L6-v2') | |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Folder for extracted images | |
IMAGE_FOLDER = "/data/extracted_images" | |
os.makedirs(IMAGE_FOLDER, exist_ok=True) | |
### Step 1: Extract Text from PDF ### | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
doc = pymupdf.open(pdf_path) | |
for page in doc: | |
text += page.get_text() + "\n" | |
return text.strip() | |
### Step 2: Extract Text from PowerPoint ### | |
def extract_text_from_pptx(pptx_path): | |
text = "" | |
prs = Presentation(pptx_path) | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text"): | |
text += shape.text + "\n" | |
return text.strip() | |
### Step 3: Extract Images from PDF ### | |
def extract_images_from_pdf(pdf_path): | |
images = [] | |
doc = pymupdf.open(pdf_path) | |
for i, page in enumerate(doc): | |
for img_index, img in enumerate(page.get_images(full=True)): | |
xref = img[0] | |
image = doc.extract_image(xref) | |
img_bytes = image["image"] | |
img_ext = image["ext"] | |
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{img_ext}" | |
with open(img_path, "wb") as f: | |
f.write(img_bytes) | |
images.append(img_path) | |
return images | |
### Step 4: Extract Images from PowerPoint ### | |
def extract_images_from_pptx(pptx_path): | |
images = [] | |
prs = Presentation(pptx_path) | |
for i, slide in enumerate(prs.slides): | |
for shape in slide.shapes: | |
if shape.shape_type == 13: # Picture shape type | |
image = shape.image | |
img_bytes = image.blob | |
img_ext = image.ext | |
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{img_ext}" | |
with open(img_path, "wb") as f: | |
f.write(img_bytes) | |
images.append(img_path) | |
return images | |
### Step 5: Convert Text to Embeddings ### | |
def get_text_embedding(text): | |
return text_model.encode(text).tolist() | |
### Step 6: Convert Images to Embeddings ### | |
def get_image_embedding(image_path): | |
image = Image.open(image_path) | |
inputs = clip_processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
embedding = clip_model.get_image_features(**inputs) | |
return embedding.squeeze().tolist() | |
### Step 7: Store Data in ChromaDB ### | |
def store_data(texts, image_paths): | |
# Store text embeddings | |
for i, text in enumerate(texts): | |
text_embedding = get_text_embedding(text) | |
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text]) | |
# Store image embeddings | |
for j, image_path in enumerate(image_paths): | |
image_embedding = get_image_embedding(image_path) | |
collection.add(ids=[f"image_{j}"], embeddings=[image_embedding], documents=[image_path]) | |
print("Data stored successfully!") | |
### Step 8: Process and Store from Files ### | |
def process_and_store(pdf_path=None, pptx_path=None): | |
texts, images = [], [] | |
if pdf_path: | |
print(f"Processing PDF: {pdf_path}") | |
texts.append(extract_text_from_pdf(pdf_path)) | |
images.extend(extract_images_from_pdf(pdf_path)) | |
if pptx_path: | |
print(f"Processing PPTX: {pptx_path}") | |
texts.append(extract_text_from_pptx(pptx_path)) | |
images.extend(extract_images_from_pptx(pptx_path)) | |
store_data(texts, images) | |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file) | |
def greet_json(): | |
return {"Hello": "World!"} | |
def greet_json(): | |
return {"Hello": "Redmind!"} | |
def search(query: str): | |
query_embedding = get_text_embedding(query) | |
results = collection.query( | |
query_embeddings=[query_embedding], | |
n_results=5 | |
) | |
return {"results": results["documents"]} | |