Redmind's picture
Update app.py
4077f41 verified
raw
history blame
4.56 kB
from fastapi import FastAPI
import os
import pymupdf
from pptx import Presentation # python-pptx for PowerPoint
from sentence_transformers import SentenceTransformer # Text embeddings
import torch
from transformers import CLIPProcessor, CLIPModel # Image embeddings
from PIL import Image
import chromadb
app = FastAPI()
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")
pdf_file="Sutures and Suturing techniques.pdf"
pptx_file="impalnt 1.pptx"
collection = client.get_collection(name="knowledge_base")
# Initialize models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Folder for extracted images
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)
### Step 1: Extract Text from PDF ###
def extract_text_from_pdf(pdf_path):
text = ""
doc = pymupdf.open(pdf_path)
for page in doc:
text += page.get_text() + "\n"
return text.strip()
### Step 2: Extract Text from PowerPoint ###
def extract_text_from_pptx(pptx_path):
text = ""
prs = Presentation(pptx_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text.strip()
### Step 3: Extract Images from PDF ###
def extract_images_from_pdf(pdf_path):
images = []
doc = pymupdf.open(pdf_path)
for i, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
image = doc.extract_image(xref)
img_bytes = image["image"]
img_ext = image["ext"]
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{img_ext}"
with open(img_path, "wb") as f:
f.write(img_bytes)
images.append(img_path)
return images
### Step 4: Extract Images from PowerPoint ###
def extract_images_from_pptx(pptx_path):
images = []
prs = Presentation(pptx_path)
for i, slide in enumerate(prs.slides):
for shape in slide.shapes:
if shape.shape_type == 13: # Picture shape type
image = shape.image
img_bytes = image.blob
img_ext = image.ext
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{img_ext}"
with open(img_path, "wb") as f:
f.write(img_bytes)
images.append(img_path)
return images
### Step 5: Convert Text to Embeddings ###
def get_text_embedding(text):
return text_model.encode(text).tolist()
### Step 6: Convert Images to Embeddings ###
def get_image_embedding(image_path):
image = Image.open(image_path)
inputs = clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
embedding = clip_model.get_image_features(**inputs)
return embedding.squeeze().tolist()
### Step 7: Store Data in ChromaDB ###
def store_data(texts, image_paths):
# Store text embeddings
for i, text in enumerate(texts):
text_embedding = get_text_embedding(text)
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
# Store image embeddings
for j, image_path in enumerate(image_paths):
image_embedding = get_image_embedding(image_path)
collection.add(ids=[f"image_{j}"], embeddings=[image_embedding], documents=[image_path])
print("Data stored successfully!")
### Step 8: Process and Store from Files ###
def process_and_store(pdf_path=None, pptx_path=None):
texts, images = [], []
if pdf_path:
print(f"Processing PDF: {pdf_path}")
texts.append(extract_text_from_pdf(pdf_path))
images.extend(extract_images_from_pdf(pdf_path))
if pptx_path:
print(f"Processing PPTX: {pptx_path}")
texts.append(extract_text_from_pptx(pptx_path))
images.extend(extract_images_from_pptx(pptx_path))
store_data(texts, images)
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.get("/test")
def greet_json():
return {"Hello": "Redmind!"}
@app.get("/search/")
def search(query: str):
query_embedding = get_text_embedding(query)
results = collection.query(
query_embeddings=[query_embedding],
n_results=5
)
return {"results": results["documents"]}