Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,240 +1,13 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
3 |
-
import pymupdf # PyMuPDF
|
4 |
-
from pptx import Presentation
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
import torch
|
7 |
-
from transformers import CLIPProcessor, CLIPModel
|
8 |
-
from PIL import Image
|
9 |
-
import chromadb
|
10 |
-
import numpy as np
|
11 |
-
from sklearn.decomposition import PCA
|
12 |
|
13 |
-
app = FastAPI()
|
14 |
-
|
15 |
-
# Initialize ChromaDB
|
16 |
-
client = chromadb.PersistentClient(path="/data/chroma_db")
|
17 |
-
collection = client.get_or_create_collection(name="knowledge_base")
|
18 |
-
|
19 |
-
# File Paths
|
20 |
-
pdf_file = "Sutures and Suturing techniques.pdf"
|
21 |
-
pptx_file = "impalnt 1.pptx"
|
22 |
-
|
23 |
-
# Initialize Embedding Models
|
24 |
-
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
26 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
27 |
-
|
28 |
-
# Image Storage Folder
|
29 |
-
IMAGE_FOLDER = "/data/extracted_images"
|
30 |
-
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
31 |
-
|
32 |
-
# Extract Text from PDF
|
33 |
-
def extract_text_from_pdf(pdf_path):
|
34 |
-
try:
|
35 |
-
doc = pymupdf.open(pdf_path)
|
36 |
-
text = " ".join(page.get_text() for page in doc)
|
37 |
-
return text.strip() if text else None
|
38 |
-
except Exception as e:
|
39 |
-
print(f"Error extracting text from PDF: {e}")
|
40 |
-
return None
|
41 |
-
|
42 |
-
# Extract Text from PPTX
|
43 |
-
def extract_text_from_pptx(pptx_path):
|
44 |
-
try:
|
45 |
-
prs = Presentation(pptx_path)
|
46 |
-
text = " ".join(
|
47 |
-
shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")
|
48 |
-
)
|
49 |
-
return text.strip() if text else None
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Error extracting text from PPTX: {e}")
|
52 |
-
return None
|
53 |
-
|
54 |
-
# Extract Images from PDF
|
55 |
-
def extract_images_from_pdf(pdf_path):
|
56 |
-
try:
|
57 |
-
doc = pymupdf.open(pdf_path)
|
58 |
-
images = []
|
59 |
-
for i, page in enumerate(doc):
|
60 |
-
for img_index, img in enumerate(page.get_images(full=True)):
|
61 |
-
xref = img[0]
|
62 |
-
image = doc.extract_image(xref)
|
63 |
-
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
|
64 |
-
with open(img_path, "wb") as f:
|
65 |
-
f.write(image["image"])
|
66 |
-
images.append(img_path)
|
67 |
-
return images
|
68 |
-
except Exception as e:
|
69 |
-
print(f"Error extracting images from PDF: {e}")
|
70 |
-
return []
|
71 |
-
|
72 |
-
# Extract Images from PPTX
|
73 |
-
def extract_images_from_pptx(pptx_path):
|
74 |
-
try:
|
75 |
-
images = []
|
76 |
-
prs = Presentation(pptx_path)
|
77 |
-
for i, slide in enumerate(prs.slides):
|
78 |
-
for shape in slide.shapes:
|
79 |
-
if shape.shape_type == 13:
|
80 |
-
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
|
81 |
-
with open(img_path, "wb") as f:
|
82 |
-
f.write(shape.image.blob)
|
83 |
-
images.append(img_path)
|
84 |
-
return images
|
85 |
-
except Exception as e:
|
86 |
-
print(f"Error extracting images from PPTX: {e}")
|
87 |
-
return []
|
88 |
-
|
89 |
-
# Convert Text to Embeddings
|
90 |
-
def get_text_embedding(text):
|
91 |
-
return text_model.encode(text).tolist()
|
92 |
-
|
93 |
-
# Preload PCA instance globally (to maintain consistency across calls)
|
94 |
-
pca = PCA(n_components=384)
|
95 |
-
|
96 |
-
def get_image_embedding(image_path):
|
97 |
-
try:
|
98 |
-
# Load the image
|
99 |
-
image = Image.open(image_path)
|
100 |
-
inputs = processor(images=image, return_tensors="pt")
|
101 |
-
|
102 |
-
# Extract image embeddings
|
103 |
-
with torch.no_grad():
|
104 |
-
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
105 |
-
|
106 |
-
# Print the actual embedding dimension
|
107 |
-
print(f"Image embedding shape: {image_embedding.shape}")
|
108 |
-
|
109 |
-
""" # CASE 1: Embedding is already 384-dimensional ✅
|
110 |
-
if len(image_embedding) == 384:
|
111 |
-
return image_embedding.tolist()
|
112 |
-
|
113 |
-
# CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅
|
114 |
-
elif len(image_embedding) > 384:
|
115 |
-
|
116 |
-
pca = PCA(n_components=384, svd_solver='auto') # Auto solver for stability
|
117 |
-
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
118 |
-
print(f"Reduced image embedding shape: {image_embedding.shape}")
|
119 |
-
|
120 |
-
|
121 |
-
# CASE 3: Embedding is smaller than 384 → Apply Padding ❌
|
122 |
-
else:
|
123 |
-
padding = np.zeros(384 - len(image_embedding)) # Create padding vector
|
124 |
-
image_embedding = np.concatenate((image_embedding, padding)) # Append padding"""
|
125 |
-
# Truncate to 384 dimensions
|
126 |
-
image_embedding = image_embedding[:384]
|
127 |
-
|
128 |
-
# Print the final embedding shape
|
129 |
-
print(f"Final Image embedding shape: {image_embedding.shape}")
|
130 |
-
|
131 |
-
return image_embedding.tolist()
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
print(f"❌ Error generating image embedding: {e}")
|
135 |
-
return None
|
136 |
-
|
137 |
-
# Store Data in ChromaDB
|
138 |
-
def store_data(texts, image_paths):
|
139 |
-
for i, text in enumerate(texts):
|
140 |
-
if text:
|
141 |
-
text_embedding = get_text_embedding(text)
|
142 |
-
if len(text_embedding) == 384:
|
143 |
-
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
144 |
-
|
145 |
-
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None]
|
146 |
-
|
147 |
-
if all_embeddings:
|
148 |
-
all_embeddings = np.array(all_embeddings)
|
149 |
-
|
150 |
-
# Apply PCA only if necessary
|
151 |
-
if all_embeddings.shape[1] != 384:
|
152 |
-
pca = PCA(n_components=384)
|
153 |
-
all_embeddings = pca.fit_transform(all_embeddings)
|
154 |
-
|
155 |
-
for j, img_path in enumerate(image_paths):
|
156 |
-
collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
|
157 |
-
|
158 |
-
print("Data stored successfully!")
|
159 |
-
|
160 |
-
# Process and Store from Files
|
161 |
-
def process_and_store(pdf_path=None, pptx_path=None):
|
162 |
-
texts, images = [], []
|
163 |
-
if pdf_path:
|
164 |
-
pdf_text = extract_text_from_pdf(pdf_path)
|
165 |
-
if pdf_text:
|
166 |
-
texts.append(pdf_text)
|
167 |
-
images.extend(extract_images_from_pdf(pdf_path))
|
168 |
-
if pptx_path:
|
169 |
-
pptx_text = extract_text_from_pptx(pptx_path)
|
170 |
-
if pptx_text:
|
171 |
-
texts.append(pptx_text)
|
172 |
-
images.extend(extract_images_from_pptx(pptx_path))
|
173 |
-
store_data(texts, images)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
# FastAPI Endpoints
|
178 |
-
@app.get("/")
|
179 |
-
def greet_json():
|
180 |
-
# Run Data Processing
|
181 |
-
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
182 |
-
return {"Document store": "created!"}
|
183 |
-
|
184 |
-
@app.get("/retrieval")
|
185 |
-
def retrieval(query: str):
|
186 |
-
try:
|
187 |
-
query_embedding = get_text_embedding(query)
|
188 |
-
results = collection.query(query_embeddings=[query_embedding], n_results=5)
|
189 |
-
#return {"results": results.get("documents", [])}
|
190 |
-
# Set a similarity threshold (adjust as needed)
|
191 |
-
SIMILARITY_THRESHOLD = 0.7
|
192 |
-
|
193 |
-
# Extract documents and similarity scores
|
194 |
-
documents = results.get("documents", [[]])[0] # Ensure we get the first list
|
195 |
-
distances = results.get("distances", [[]])[0] # Ensure we get the first list
|
196 |
-
|
197 |
-
# Filter results based on similarity threshold
|
198 |
-
filtered_results = [
|
199 |
-
doc for doc, score in zip(documents, distances) if score >= SIMILARITY_THRESHOLD
|
200 |
-
]
|
201 |
-
|
202 |
-
# Return filtered results or indicate no match found
|
203 |
-
if filtered_results:
|
204 |
-
return {"results": filtered_results}
|
205 |
-
else:
|
206 |
-
return {"results": "No relevant match found in ChromaDB."}
|
207 |
-
except Exception as e:
|
208 |
-
return {"error": str(e)}
|
209 |
|
210 |
import pandas as pd
|
211 |
from io import StringIO
|
212 |
import os
|
213 |
import base64
|
214 |
-
@app.get("/save_file_dify")
|
215 |
-
def save_file_dify(csv_data: str):
|
216 |
-
|
217 |
-
# Split into lines
|
218 |
-
lines = csv_data.split("\n")
|
219 |
-
|
220 |
-
# Find the max number of columns
|
221 |
-
max_cols = max(line.count(",") + 1 for line in lines if line.strip())
|
222 |
|
223 |
-
|
224 |
-
fixed_lines = [line + "," * (max_cols - line.count(",") - 1) for line in lines]
|
225 |
-
|
226 |
-
# Reconstruct CSV string
|
227 |
-
fixed_csv_data = "\n".join(fixed_lines)
|
228 |
-
|
229 |
-
# Convert CSV string to DataFrame
|
230 |
-
df = pd.read_csv(StringIO(fixed_csv_data))
|
231 |
-
|
232 |
-
|
233 |
-
#save in dify dataset and return download link
|
234 |
-
download_link = get_download_link_dify(df)
|
235 |
-
|
236 |
-
return download_link
|
237 |
-
|
238 |
|
239 |
def get_download_link_dify(df):
|
240 |
# code to save file in dify framework
|
@@ -312,3 +85,36 @@ def dataframe_to_binary(df):
|
|
312 |
|
313 |
return output
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
from io import StringIO
|
7 |
import os
|
8 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def get_download_link_dify(df):
|
13 |
# code to save file in dify framework
|
|
|
85 |
|
86 |
return output
|
87 |
|
88 |
+
|
89 |
+
|
90 |
+
# FastAPI Endpoints
|
91 |
+
@app.get("/")
|
92 |
+
def greet_json():
|
93 |
+
# Run Data Processing
|
94 |
+
#process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
95 |
+
return {"Document store": "created!"}
|
96 |
+
|
97 |
+
@app.get("/save_file_dify")
|
98 |
+
def save_file_dify(csv_data: str):
|
99 |
+
|
100 |
+
# Split into lines
|
101 |
+
lines = csv_data.split("\n")
|
102 |
+
|
103 |
+
# Find the max number of columns
|
104 |
+
max_cols = max(line.count(",") + 1 for line in lines if line.strip())
|
105 |
+
|
106 |
+
# Normalize all rows to have the same number of columns
|
107 |
+
fixed_lines = [line + "," * (max_cols - line.count(",") - 1) for line in lines]
|
108 |
+
|
109 |
+
# Reconstruct CSV string
|
110 |
+
fixed_csv_data = "\n".join(fixed_lines)
|
111 |
+
|
112 |
+
# Convert CSV string to DataFrame
|
113 |
+
df = pd.read_csv(StringIO(fixed_csv_data))
|
114 |
+
|
115 |
+
|
116 |
+
#save in dify dataset and return download link
|
117 |
+
download_link = get_download_link_dify(df)
|
118 |
+
|
119 |
+
return download_link
|
120 |
+
|