Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -103,10 +103,22 @@ def get_image_embedding(image_path):
|
|
103 |
with torch.no_grad():
|
104 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
return image_embedding.tolist()
|
112 |
|
|
|
103 |
with torch.no_grad():
|
104 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
105 |
|
106 |
+
# Print the actual embedding dimension
|
107 |
+
print(f"Image embedding shape: {image_embedding.shape}")
|
108 |
+
|
109 |
+
# CASE 1: Embedding is already 384-dimensional ✅
|
110 |
+
if len(image_embedding) == 384:
|
111 |
+
return image_embedding.tolist()
|
112 |
+
|
113 |
+
# CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅
|
114 |
+
elif len(image_embedding) > 384:
|
115 |
+
pca = PCA(n_components=384)
|
116 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
117 |
+
|
118 |
+
# CASE 3: Embedding is smaller than 384 → Apply Padding ❌
|
119 |
+
else:
|
120 |
+
padding = np.zeros(384 - len(image_embedding)) # Create padding vector
|
121 |
+
image_embedding = np.concatenate((image_embedding, padding)) # Append padding
|
122 |
|
123 |
return image_embedding.tolist()
|
124 |
|