File size: 9,117 Bytes
0e876c8
 
 
 
 
 
 
 
 
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045e883
0e876c8
045e883
 
0e876c8
 
045e883
0e876c8
 
045e883
0e876c8
 
 
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045e883
0e876c8
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045e883
 
0e876c8
 
 
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
045e883
 
0e876c8
 
045e883
0e876c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Dataset from hugging face"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     id        place     label  \\\n",
      "0  2401  Borderlands  Positive   \n",
      "1  2401  Borderlands  Positive   \n",
      "2  2401  Borderlands  Positive   \n",
      "3  2401  Borderlands  Positive   \n",
      "4  2401  Borderlands  Positive   \n",
      "\n",
      "                                                text  \n",
      "0  im getting on borderlands and i will murder yo...  \n",
      "1  I am coming to the borders and I will kill you...  \n",
      "2  im getting on borderlands and i will kill you ...  \n",
      "3  im coming on borderlands and i will murder you...  \n",
      "4  im getting on borderlands 2 and i will murder ...  \n"
     ]
    }
   ],
   "source": [
    "import pandas as pd \n",
    "\n",
    "column_names = ['id',\"place\",\"label\", \"text\"]\n",
    "#Train Dataset\n",
    "train_df = pd.read_csv(\"twitter_training.csv\", names=column_names, header=None)\n",
    "\n",
    "#Test Dataset\n",
    "test_df = pd.read_csv(\"twitter_validation.csv\", names=column_names, header=None)\n",
    "\n",
    "\n",
    "print(train_df.head())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[nltk_data] Downloading package stopwords to C:\\Users\\Regino Balogo\n",
      "[nltk_data]     Jr\\AppData\\Roaming\\nltk_data...\n",
      "[nltk_data]   Package stopwords is already up-to-date!\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sample cleaned text:\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>text</th>\n",
       "      <th>clean_text</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>im getting on borderlands and i will murder yo...</td>\n",
       "      <td>im getting borderlands murder</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>I am coming to the borders and I will kill you...</td>\n",
       "      <td>coming borders kill</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>im getting on borderlands and i will kill you ...</td>\n",
       "      <td>im getting borderlands kill</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>im coming on borderlands and i will murder you...</td>\n",
       "      <td>im coming borderlands murder</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>im getting on borderlands 2 and i will murder ...</td>\n",
       "      <td>im getting borderlands 2 murder</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                text  \\\n",
       "0  im getting on borderlands and i will murder yo...   \n",
       "1  I am coming to the borders and I will kill you...   \n",
       "2  im getting on borderlands and i will kill you ...   \n",
       "3  im coming on borderlands and i will murder you...   \n",
       "4  im getting on borderlands 2 and i will murder ...   \n",
       "\n",
       "                        clean_text  \n",
       "0    im getting borderlands murder  \n",
       "1              coming borders kill  \n",
       "2      im getting borderlands kill  \n",
       "3     im coming borderlands murder  \n",
       "4  im getting borderlands 2 murder  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import re\n",
    "import nltk\n",
    "from nltk.corpus import stopwords\n",
    "\n",
    "# Stopwords\n",
    "nltk.download(\"stopwords\")\n",
    "stop_words = set(stopwords.words(\"english\"))\n",
    "\n",
    "# Clean Text\n",
    "def preprocess_text(text):\n",
    "    if isinstance(text, float):  # Handle missing values\n",
    "        return \"\"\n",
    "    \n",
    "    text = text.lower()  # Convert to lowercase\n",
    "    text = re.sub(r\"\\W\", \" \", text)  # Remove special characters\n",
    "    text = re.sub(r\"\\s+\", \" \", text).strip()  # Remove extra spaces\n",
    "    text = \" \".join([word for word in text.split() if word not in stop_words])  # Remove stopwords\n",
    "    return text\n",
    "\n",
    "# Apply preprocessing to the text column\n",
    "train_df[\"clean_text\"] = train_df[\"text\"].apply(preprocess_text)\n",
    "test_df[\"clean_text\"] = test_df[\"text\"].apply(preprocess_text)\n",
    "\n",
    "print(\"Sample cleaned text:\")\n",
    "display(train_df[[\"text\", \"clean_text\"]].head())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TF-IDF vectorization complete! βœ…\n",
      "Training data shape: (74682, 5000)\n",
      "Testing data shape: (1000, 5000)\n"
     ]
    }
   ],
   "source": [
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "\n",
    "# TF-IDF Vectorizer\n",
    "vectorizer = TfidfVectorizer(max_features=5000)\n",
    "\n",
    "# Fit and transform training data, then transform test data\n",
    "X_train = vectorizer.fit_transform(train_df[\"clean_text\"])\n",
    "X_test = vectorizer.transform(test_df[\"clean_text\"])\n",
    "\n",
    "# Extract labels\n",
    "y_train = train_df[\"label\"]\n",
    "y_test = test_df[\"label\"]\n",
    "\n",
    "print(\"TF-IDF vectorization complete! βœ…\")\n",
    "print(f\"Training data shape: {X_train.shape}\")\n",
    "print(f\"Testing data shape: {X_test.shape}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model Accuracy: 0.8120\n",
      "\n",
      "Classification Report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "  Irrelevant       0.82      0.73      0.77       172\n",
      "    Negative       0.78      0.89      0.83       266\n",
      "     Neutral       0.85      0.76      0.80       285\n",
      "    Positive       0.81      0.84      0.82       277\n",
      "\n",
      "    accuracy                           0.81      1000\n",
      "   macro avg       0.81      0.81      0.81      1000\n",
      "weighted avg       0.81      0.81      0.81      1000\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.metrics import accuracy_score, classification_report\n",
    "\n",
    "# Train the model\n",
    "model = LogisticRegression(max_iter=1000)\n",
    "model.fit(X_train, y_train)\n",
    "\n",
    "# Make predictions\n",
    "y_pred = model.predict(X_test)\n",
    "\n",
    "# Evaluate the model\n",
    "accuracy = accuracy_score(y_test, y_pred)\n",
    "print(f\"Model Accuracy: {accuracy:.4f}\")\n",
    "\n",
    "# Display classification report\n",
    "print(\"\\nClassification Report:\")\n",
    "print(classification_report(y_test, y_pred))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model and vectorizer saved successfully! βœ…\n"
     ]
    }
   ],
   "source": [
    "import joblib\n",
    "\n",
    "# Save the trained model\n",
    "joblib.dump(model, \"sentiment_model.pkl\")\n",
    "\n",
    "# Save the TF-IDF vectorizer\n",
    "joblib.dump(vectorizer, \"tfidf_vectorizer.pkl\")\n",
    "\n",
    "print(\"Model and vectorizer saved successfully! βœ…\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}