|
import json |
|
import re |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
import torch |
|
import warnings |
|
import spaces |
|
|
|
flash_attn_installed = False |
|
try: |
|
import subprocess |
|
print("Installing flash-attn...") |
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
flash_attn_installed = True |
|
except Exception as e: |
|
print(f"Error installing flash-attn: {e}") |
|
|
|
|
|
|
|
warnings.filterwarnings( |
|
"ignore", |
|
message="You have modified the pretrained model configuration to control generation.", |
|
) |
|
warnings.filterwarnings( |
|
"ignore", |
|
message="You are not running the flash-attention implementation, expect numerical differences.", |
|
) |
|
|
|
print("Initializing application...") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"sciphi/triplex", |
|
trust_remote_code=True, |
|
attn_implementation="flash_attention_2" if flash_attn_installed else None, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
low_cpu_mem_usage=True, |
|
).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"sciphi/triplex", |
|
trust_remote_code=True, |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
|
|
print("Model and tokenizer loaded successfully.") |
|
|
|
|
|
generation_config = GenerationConfig.from_pretrained("sciphi/triplex") |
|
generation_config.max_length = 2048 |
|
generation_config.pad_token_id = tokenizer.eos_token_id |
|
@spaces.GPU |
|
def triplextract(text, entity_types, predicates): |
|
input_format = """Perform Named Entity Recognition (NER) and extract knowledge graph triplets from the text. NER identifies named entities of given entity types, and triple extraction identifies relationships between entities using specified predicates. Return the result as a JSON object with an "entities_and_triples" key containing an array of entities and triples. |
|
**Entity Types:** |
|
{entity_types} |
|
**Predicates:** |
|
{predicates} |
|
**Text:** |
|
{text} |
|
""" |
|
message = input_format.format( |
|
entity_types = json.dumps({"entity_types": entity_types}), |
|
predicates = json.dumps({"predicates": predicates}), |
|
text = text) |
|
|
|
|
|
|
|
|
|
|
|
messages = [{"role": "user", "content": message}] |
|
|
|
print("Tokenizing input...") |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt" |
|
).to(model.device) |
|
|
|
attention_mask = input_ids.ne(tokenizer.pad_token_id) |
|
|
|
print("Generating output...") |
|
try: |
|
with torch.no_grad(): |
|
output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
do_sample=True, |
|
) |
|
|
|
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print("Decoding output completed.") |
|
|
|
return decoded_output |
|
except torch.cuda.OutOfMemoryError as e: |
|
print(f"CUDA out of memory error: {e}") |
|
return "Error: CUDA out of memory." |
|
except Exception as e: |
|
print(f"Error in generation: {e}") |
|
return f"Error in generation: {str(e)}" |
|
|
|
def parse_triples(prediction): |
|
entities = {} |
|
relationships = [] |
|
|
|
try: |
|
data = json.loads(prediction) |
|
items = data.get("entities_and_triples", []) |
|
except json.JSONDecodeError: |
|
json_match = re.search(r"```json\s*(.*?)\s*```", prediction, re.DOTALL) |
|
if json_match: |
|
try: |
|
data = json.loads(json_match.group(1)) |
|
items = data.get("entities_and_triples", []) |
|
except json.JSONDecodeError: |
|
items = re.findall(r"\[(.*?)\]", prediction) |
|
else: |
|
items = re.findall(r"\[(.*?)\]", prediction) |
|
|
|
for item in items: |
|
if isinstance(item, str): |
|
if ":" in item: |
|
id, entity = item.split(",", 1) |
|
id = id.strip("[]").strip() |
|
entity_type, entity_value = entity.split(":", 1) |
|
entities[id] = { |
|
"type": entity_type.strip(), |
|
"value": entity_value.strip(), |
|
} |
|
else: |
|
parts = item.split() |
|
if len(parts) >= 3: |
|
source = parts[0].strip("[]") |
|
relation = " ".join(parts[1:-1]) |
|
target = parts[-1].strip("[]") |
|
relationships.append((source, relation.strip(), target)) |
|
|
|
return entities, relationships |