Reyad-Ahmmed commited on
Commit
99870b0
·
verified ·
1 Parent(s): affb121

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +229 -1
app.py CHANGED
@@ -1 +1,229 @@
1
- print("hello world")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.model_selection import train_test_split
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
4
+ import torch
5
+ from torch.utils.data import Dataset
6
+ from torch.utils.data import DataLoader
7
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification
8
+ import pandas as pd
9
+
10
+ #from sklearn.linear_model import LogisticRegression
11
+ #from sklearn.metrics import accuracy_score, confusion_matrix
12
+ #import matplotlib.pyplot as plt
13
+ import seaborn as sns
14
+ #import numpy as np
15
+ import sys
16
+ import torch.nn.functional as F
17
+ #from torch.nn import CrossEntropyLoss
18
+ #from sklearn.decomposition import PCA
19
+ import matplotlib.pyplot as plt
20
+
21
+ if len(sys.argv) > 1:
22
+ # sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
23
+ runModel = sys.argv[1]
24
+ print(f"Passed value: {runModel}")
25
+ print (sys.argv[2])
26
+
27
+ else:
28
+ print("No argument was passed.")
29
+
30
+
31
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
32
+ modelNameToUse = sys.argv[2]
33
+
34
+ if (runModel=='1'):
35
+ dataFileName = sys.argv[2] + '.csv'
36
+ print (dataFileName)
37
+ # Load the data from the CSV file
38
+ df = pd.read_csv(dataFileName)
39
+ # Access the text and labels
40
+ texts = df['text'].tolist()
41
+ labels = df['label'].tolist()
42
+
43
+ print('Train Model')
44
+ # Encode the labels
45
+ sorted_labels = sorted(df['label'].unique())
46
+ label_mapping = {label: i for i, label in enumerate(sorted_labels)}
47
+ df['label'] = df['label'].map(label_mapping)
48
+ print(df['label'])
49
+ # Train/test split
50
+ train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
51
+
52
+ # Tokenization
53
+ tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
54
+
55
+ # Model and training setup
56
+ model = RobertaForSequenceClassification.from_pretrained('roberta-base', output_attentions=True, num_labels=len(label_mapping)).to('cpu')
57
+
58
+ model.resize_token_embeddings(len(tokenizer))
59
+
60
+ train_encodings = tokenizer(list(train_df['text']), truncation=True, padding=True, max_length=64)
61
+ test_encodings = tokenizer(list(test_df['text']), truncation=True, padding=True, max_length=64)
62
+
63
+ # Dataset class
64
+ class IntentDataset(Dataset):
65
+ def __init__(self, encodings, labels):
66
+
67
+ self.encodings = encodings
68
+ self.labels = labels
69
+
70
+ def __getitem__(self, idx):
71
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
72
+ label = self.labels[idx]
73
+ item['labels'] = torch.tensor(self.labels[idx])
74
+
75
+
76
+ return item
77
+
78
+ def __len__(self):
79
+ return len(self.labels)
80
+
81
+ train_dataset = IntentDataset(train_encodings, list(train_df['label']))
82
+ test_dataset = IntentDataset(test_encodings, list(test_df['label']))
83
+
84
+
85
+
86
+ # Create an instance of the custom loss function
87
+ training_args = TrainingArguments(
88
+ output_dir='./results_' + modelNameToUse,
89
+ num_train_epochs=25,
90
+ per_device_train_batch_size=2,
91
+ per_device_eval_batch_size=2,
92
+ warmup_steps=500,
93
+ weight_decay=0.02,
94
+ logging_dir='./logs_' + modelNameToUse,
95
+ logging_steps=10,
96
+ evaluation_strategy="epoch",
97
+ )
98
+
99
+ trainer = Trainer(
100
+ model=model,
101
+ args=training_args,
102
+ train_dataset=train_dataset,
103
+ eval_dataset=test_dataset
104
+ )
105
+
106
+ # Train the model
107
+ trainer.train()
108
+
109
+ # Evaluate the model
110
+ trainer.evaluate()
111
+
112
+ label_mapping = {
113
+ 0: "lastmonth",
114
+ 1: "nextweek",
115
+ 2: "sevendays",
116
+ 3: "today",
117
+ 4: "tomorrow",
118
+ 5: "yesterday"
119
+
120
+ }
121
+
122
+ def evaluate_and_report_errors(model, dataloader, tokenizer):
123
+ model.eval()
124
+ incorrect_predictions = []
125
+ with torch.no_grad():
126
+ #print(dataloader)
127
+ for batch in dataloader:
128
+ input_ids = batch['input_ids'].to(device)
129
+ attention_mask = batch['attention_mask'].to(device)
130
+ labels = batch['labels'].to(device)
131
+ outputs = model(input_ids=input_ids, attention_mask=attention_mask)
132
+ logits = outputs.logits
133
+ predictions = torch.argmax(logits, dim=1)
134
+
135
+ for i, prediction in enumerate(predictions):
136
+ if prediction != labels[i]:
137
+ incorrect_predictions.append({
138
+ "prompt": tokenizer.decode(input_ids[i], skip_special_tokens=True),
139
+ "predicted": prediction.item(),
140
+ "actual": labels[i].item()
141
+ })
142
+
143
+ # Print incorrect predictions
144
+ if incorrect_predictions:
145
+ print("\nIncorrect Predictions:")
146
+ for error in incorrect_predictions:
147
+ print(f"Sentence: {error['prompt']}")
148
+ #print(f"Predicted Label: {GetCategoryFromCategoryLong(error['predicted'])} | Actual Label: {GetCategoryFromCategoryLong(error['actual'])}\n")
149
+ print(f"Predicted Label: {label_mapping[error['predicted']]} | Actual Label: {label_mapping[error['actual']]}\n")
150
+ #print(f"Predicted Label: {error['predicted']} | Actual Label: {label_mapping[error['actual']]}\n")
151
+ else:
152
+ print("\nNo incorrect predictions found.")
153
+
154
+ train_dataloader = DataLoader(train_dataset, batch_size=10, shuffle=True)
155
+ evaluate_and_report_errors(model,train_dataloader, tokenizer)
156
+
157
+ # Save the model and tokenizer
158
+ model.save_pretrained('./' + modelNameToUse + '_model')
159
+ tokenizer.save_pretrained('./' + modelNameToUse + '_tokenizer')
160
+ else:
161
+ print('Load Pre-trained')
162
+ model_save_path = "./" + modelNameToUse + "_model"
163
+ tokenizer_save_path = "./" + modelNameToUse + "_tokenizer"
164
+
165
+ # RobertaTokenizer.from_pretrained(model_save_path)
166
+ model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
167
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
168
+
169
+ #Define the label mappings (this must match the mapping used during training)
170
+ label_mapping = {
171
+ 0: "lastmonth",
172
+ 1: "nextweek",
173
+ 2: "sevendays",
174
+ 3: "today",
175
+ 4: "tomorrow",
176
+ 5: "yesterday"
177
+ }
178
+
179
+
180
+ #Function to classify user input
181
+ def classifyTimeFrame():
182
+ while True:
183
+ user_input = input("Enter a command (or type 'q' to quit): ")
184
+ if user_input.lower() == 'q':
185
+ print("Exiting...")
186
+ break
187
+
188
+ # Tokenize and predict
189
+ input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cpu')
190
+
191
+ with torch.no_grad():
192
+ attention_mask = input_encoding['attention_mask'].clone()
193
+
194
+
195
+
196
+ # Modify the attention mask to emphasize certain key tokens
197
+ # for idx, token_id in enumerate(input_encoding['input_ids'][0]):
198
+ # word = tokenizer.decode([token_id])
199
+ # print(word)
200
+ # if word.strip() in ["now", "same", "continue", "again", "also"]: # Target key tokens
201
+ # attention_mask[0, idx] = 3 # Increase attention weight for these words
202
+ # else:
203
+ # attention_mask[0, idx] = 0
204
+ # print (attention_mask)
205
+ # input_encoding['attention_mask'] = attention_mask
206
+ # print (input_encoding)
207
+ output = model(**input_encoding, output_hidden_states=True)
208
+
209
+ probabilities = F.softmax(output.logits, dim=-1)
210
+
211
+ prediction = torch.argmax(output.logits, dim=1).cpu().numpy()
212
+
213
+ # Map prediction back to label
214
+ print(prediction)
215
+ predicted_label = label_mapping[prediction[0]]
216
+
217
+
218
+ print(f"Predicted intent: {predicted_label}\n")
219
+ # Print the confidence for each label
220
+ print("\nLabel Confidence Scores:")
221
+ for i, label in label_mapping.items():
222
+ confidence = probabilities[0][i].item() # Get confidence score for each label
223
+ print(f"{label}: {confidence:.4f}")
224
+ print("\n")
225
+
226
+ #Run the function
227
+ classifyTimeFrame()
228
+
229
+