practice3 / app.py
Karin0616
theme
1f6afca
raw
history blame
6.82 kB
import gradio as gr
import random
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
def ade_palette():
return [
[204, 87, 92], # road (Reddish)
[112, 185, 212], # sidewalk (Blue)
[196, 160, 122], # building (Brown)
[106, 135, 242], # wall (Light Blue)
[91, 192, 222], # fence (Turquoise)
[255, 192, 203], # pole (Pink)
[176, 224, 230], # traffic light (Light Blue)
[222, 49, 99], # traffic sign (Red)
[139, 69, 19], # vegetation (Brown)
[255, 0, 0], # terrain (Red)
[0, 0, 255], # sky (Blue)
[255, 228, 181], # person (Peach)
[128, 0, 0], # rider (Maroon)
[0, 128, 0], # car (Green)
[255, 99, 71], # truck (Tomato)
[0, 255, 0], # bus (Lime)
[128, 0, 128], # train (Purple)
[255, 255, 0], # motorcycle (Yellow)
[128, 0, 128] # bicycle (Purple)
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
with gr.Blocks() as demo:
section_labels = [
"road",
"sidewalk",
"building",
"wall",
"fence",
"pole",
"traffic light",
"traffic sign",
"vegetation",
"terrain",
"sky",
"person",
"rider",
"car",
"truck",
"bus",
"train",
"motorcycle",
"bicycle"
]
with gr.Row():
num_boxes = gr.Slider(1, 1, 1, step=0, label="Number of boxes")
num_segments = gr.Slider(0, 19, 1, step=1, label="Number of segments")
with gr.Row():
img_input = gr.Image()
img_output = gr.AnnotatedImage(
color_map={
"road": "#CC575C",
"sidewalk": "#70B9D4",
"building": "#C4A07A",
"wall": "#6A87F2",
"fence": "#5BC0DE",
"pole": "#FFC0CB",
"traffic light": "#B0E0E6",
"traffic sign": "#DE3163",
"vegetation": "#8B4513",
"terrain": "#FF0000",
"sky": "#0000FF",
"person": "#FFE4B5",
"rider": "#800000",
"car": "#008000",
"truck": "#FF6347",
"bus": "#00FF00",
"train": "#800080",
"motorcycle": "#FFFF00",
"bicycle": "#800080"}
)
section_btn = gr.Button("Identify Sections")
selected_section = gr.Textbox(label="Selected Section")
def section(img, num_boxes, num_segments):
sections = []
for a in range(num_boxes):
x = random.randint(0, img.shape[1])
y = random.randint(0, img.shape[0])
w = random.randint(0, img.shape[1] - x)
h = random.randint(0, img.shape[0] - y)
sections.append(((x, y, x + w, y + h), section_labels[a]))
for b in range(num_segments):
x = random.randint(0, img.shape[1])
y = random.randint(0, img.shape[0])
r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))
mask = np.zeros(img.shape[:2])
for i in range(img.shape[0]):
for j in range(img.shape[1]):
dist_square = (i - y) ** 2 + (j - x) ** 2
if dist_square < r ** 2:
mask[i, j] = round((r ** 2 - dist_square) / r ** 2 * 4) / 4
sections.append((mask, section_labels[b + num_boxes]))
return (img, sections)
section_btn.click(section, [img_input, num_boxes, num_segments], img_output)
def select_section(evt: gr.SelectData):
return section_labels[evt.index]
img_output.select(select_section, None, selected_section)
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(564,846)),
outputs=['plot'],
live=True,
examples=["city1.jpg","city2.jpg","city3.jpg"],
allow_flagging='never',
title="This is a machine learning activity project at Kyunggi University.",
theme="darkpeach",
css="""
body {
background-color: dark;
color: white; /* ํฐํŠธ ์ƒ‰์ƒ ์ˆ˜์ • */
font-family: Arial, sans-serif; /* ํฐํŠธ ํŒจ๋ฐ€๋ฆฌ ์ˆ˜์ • */
}
"""
)
demo.launch()