Karin0616
commited on
Commit
ยท
1f6afca
1
Parent(s):
86b082c
theme
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from matplotlib import gridspec
|
3 |
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
@@ -14,26 +16,28 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
14 |
)
|
15 |
|
16 |
def ade_palette():
|
|
|
17 |
return [
|
18 |
-
[204, 87, 92],
|
19 |
[112, 185, 212], # sidewalk (Blue)
|
20 |
[196, 160, 122], # building (Brown)
|
21 |
[106, 135, 242], # wall (Light Blue)
|
22 |
-
[91, 192, 222],
|
23 |
[255, 192, 203], # pole (Pink)
|
24 |
[176, 224, 230], # traffic light (Light Blue)
|
25 |
-
[222, 49, 99],
|
26 |
-
[139, 69, 19],
|
27 |
-
[255, 0, 0],
|
28 |
-
[0, 0, 255],
|
29 |
[255, 228, 181], # person (Peach)
|
30 |
-
[128, 0, 0],
|
31 |
-
[0, 128, 0],
|
32 |
-
[255, 99, 71],
|
33 |
-
[0, 255, 0],
|
34 |
-
[128, 0, 128],
|
35 |
-
[255, 255, 0],
|
36 |
-
[128, 0, 128]
|
|
|
37 |
]
|
38 |
|
39 |
labels_list = []
|
@@ -73,14 +77,7 @@ def draw_plot(pred_img, seg):
|
|
73 |
ax.tick_params(width=0.0, labelsize=25)
|
74 |
return fig
|
75 |
|
76 |
-
def sepia(input_img
|
77 |
-
selected_color = None
|
78 |
-
for label, button_state in zip(labels_list, label_buttons):
|
79 |
-
if button_state:
|
80 |
-
label_index = labels_list.index(label)
|
81 |
-
selected_color = colormap[label_index]
|
82 |
-
break
|
83 |
-
|
84 |
input_img = Image.fromarray(input_img)
|
85 |
|
86 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
@@ -90,43 +87,129 @@ def sepia(input_img, *label_buttons):
|
|
90 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
91 |
logits = tf.image.resize(
|
92 |
logits, input_img.size[::-1]
|
93 |
-
)
|
94 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
95 |
|
96 |
color_seg = np.zeros(
|
97 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
98 |
-
)
|
99 |
-
|
100 |
-
label =
|
101 |
-
color_seg[seg.numpy() == label, :] = selected_color
|
102 |
|
|
|
103 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
104 |
pred_img = pred_img.astype(np.uint8)
|
105 |
|
106 |
fig = draw_plot(pred_img, seg)
|
107 |
return fig
|
108 |
|
109 |
-
# ๋ผ๋ฒจ ๋ฒํผ ์์ฑ
|
110 |
-
label_buttons = [gr.Button(label) for label in labels_list]
|
111 |
-
|
112 |
-
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
113 |
-
iface = gr.Interface(
|
114 |
-
fn=sepia,
|
115 |
-
inputs=[gr.Image(shape=(564, 846))] + label_buttons,
|
116 |
-
outputs="plot",
|
117 |
-
live=True,
|
118 |
-
examples=["city1.jpg", "city2.jpg", "city3.jpg"],
|
119 |
-
allow_flagging='never',
|
120 |
-
title="This is a machine learning activity project at Kyunggi University.",
|
121 |
-
theme="darkpeach",
|
122 |
-
css="""
|
123 |
-
body{
|
124 |
-
background-color: dark;
|
125 |
-
color: white;
|
126 |
-
font-family: Arial, sans-serif;
|
127 |
-
}
|
128 |
-
"""
|
129 |
-
)
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
+
|
4 |
from matplotlib import gridspec
|
5 |
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
|
|
16 |
)
|
17 |
|
18 |
def ade_palette():
|
19 |
+
|
20 |
return [
|
21 |
+
[204, 87, 92], # road (Reddish)
|
22 |
[112, 185, 212], # sidewalk (Blue)
|
23 |
[196, 160, 122], # building (Brown)
|
24 |
[106, 135, 242], # wall (Light Blue)
|
25 |
+
[91, 192, 222], # fence (Turquoise)
|
26 |
[255, 192, 203], # pole (Pink)
|
27 |
[176, 224, 230], # traffic light (Light Blue)
|
28 |
+
[222, 49, 99], # traffic sign (Red)
|
29 |
+
[139, 69, 19], # vegetation (Brown)
|
30 |
+
[255, 0, 0], # terrain (Red)
|
31 |
+
[0, 0, 255], # sky (Blue)
|
32 |
[255, 228, 181], # person (Peach)
|
33 |
+
[128, 0, 0], # rider (Maroon)
|
34 |
+
[0, 128, 0], # car (Green)
|
35 |
+
[255, 99, 71], # truck (Tomato)
|
36 |
+
[0, 255, 0], # bus (Lime)
|
37 |
+
[128, 0, 128], # train (Purple)
|
38 |
+
[255, 255, 0], # motorcycle (Yellow)
|
39 |
+
[128, 0, 128] # bicycle (Purple)
|
40 |
+
|
41 |
]
|
42 |
|
43 |
labels_list = []
|
|
|
77 |
ax.tick_params(width=0.0, labelsize=25)
|
78 |
return fig
|
79 |
|
80 |
+
def sepia(input_img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
input_img = Image.fromarray(input_img)
|
82 |
|
83 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
|
|
87 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
88 |
logits = tf.image.resize(
|
89 |
logits, input_img.size[::-1]
|
90 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
91 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
92 |
|
93 |
color_seg = np.zeros(
|
94 |
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
95 |
+
) # height, width, 3
|
96 |
+
for label, color in enumerate(colormap):
|
97 |
+
color_seg[seg.numpy() == label, :] = color
|
|
|
98 |
|
99 |
+
# Show image + mask
|
100 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
101 |
pred_img = pred_img.astype(np.uint8)
|
102 |
|
103 |
fig = draw_plot(pred_img, seg)
|
104 |
return fig
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
with gr.Blocks() as demo:
|
108 |
+
section_labels = [
|
109 |
+
"road",
|
110 |
+
"sidewalk",
|
111 |
+
"building",
|
112 |
+
"wall",
|
113 |
+
"fence",
|
114 |
+
"pole",
|
115 |
+
"traffic light",
|
116 |
+
"traffic sign",
|
117 |
+
"vegetation",
|
118 |
+
"terrain",
|
119 |
+
"sky",
|
120 |
+
"person",
|
121 |
+
"rider",
|
122 |
+
"car",
|
123 |
+
"truck",
|
124 |
+
"bus",
|
125 |
+
"train",
|
126 |
+
"motorcycle",
|
127 |
+
"bicycle"
|
128 |
+
]
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
num_boxes = gr.Slider(1, 1, 1, step=0, label="Number of boxes")
|
132 |
+
num_segments = gr.Slider(0, 19, 1, step=1, label="Number of segments")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
img_input = gr.Image()
|
136 |
+
img_output = gr.AnnotatedImage(
|
137 |
+
color_map={
|
138 |
+
"road": "#CC575C",
|
139 |
+
"sidewalk": "#70B9D4",
|
140 |
+
"building": "#C4A07A",
|
141 |
+
"wall": "#6A87F2",
|
142 |
+
"fence": "#5BC0DE",
|
143 |
+
"pole": "#FFC0CB",
|
144 |
+
"traffic light": "#B0E0E6",
|
145 |
+
"traffic sign": "#DE3163",
|
146 |
+
"vegetation": "#8B4513",
|
147 |
+
"terrain": "#FF0000",
|
148 |
+
"sky": "#0000FF",
|
149 |
+
"person": "#FFE4B5",
|
150 |
+
"rider": "#800000",
|
151 |
+
"car": "#008000",
|
152 |
+
"truck": "#FF6347",
|
153 |
+
"bus": "#00FF00",
|
154 |
+
"train": "#800080",
|
155 |
+
"motorcycle": "#FFFF00",
|
156 |
+
"bicycle": "#800080"}
|
157 |
+
)
|
158 |
+
|
159 |
+
section_btn = gr.Button("Identify Sections")
|
160 |
+
selected_section = gr.Textbox(label="Selected Section")
|
161 |
+
|
162 |
+
|
163 |
+
def section(img, num_boxes, num_segments):
|
164 |
+
sections = []
|
165 |
+
|
166 |
+
for a in range(num_boxes):
|
167 |
+
x = random.randint(0, img.shape[1])
|
168 |
+
y = random.randint(0, img.shape[0])
|
169 |
+
w = random.randint(0, img.shape[1] - x)
|
170 |
+
h = random.randint(0, img.shape[0] - y)
|
171 |
+
sections.append(((x, y, x + w, y + h), section_labels[a]))
|
172 |
+
for b in range(num_segments):
|
173 |
+
x = random.randint(0, img.shape[1])
|
174 |
+
y = random.randint(0, img.shape[0])
|
175 |
+
r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))
|
176 |
+
mask = np.zeros(img.shape[:2])
|
177 |
+
for i in range(img.shape[0]):
|
178 |
+
for j in range(img.shape[1]):
|
179 |
+
dist_square = (i - y) ** 2 + (j - x) ** 2
|
180 |
+
if dist_square < r ** 2:
|
181 |
+
mask[i, j] = round((r ** 2 - dist_square) / r ** 2 * 4) / 4
|
182 |
+
sections.append((mask, section_labels[b + num_boxes]))
|
183 |
+
return (img, sections)
|
184 |
+
|
185 |
+
|
186 |
+
section_btn.click(section, [img_input, num_boxes, num_segments], img_output)
|
187 |
+
|
188 |
+
|
189 |
+
def select_section(evt: gr.SelectData):
|
190 |
+
return section_labels[evt.index]
|
191 |
+
|
192 |
+
|
193 |
+
img_output.select(select_section, None, selected_section)
|
194 |
+
|
195 |
+
demo = gr.Interface(fn=sepia,
|
196 |
+
inputs=gr.Image(shape=(564,846)),
|
197 |
+
outputs=['plot'],
|
198 |
+
live=True,
|
199 |
+
examples=["city1.jpg","city2.jpg","city3.jpg"],
|
200 |
+
allow_flagging='never',
|
201 |
+
title="This is a machine learning activity project at Kyunggi University.",
|
202 |
+
theme="darkpeach",
|
203 |
+
css="""
|
204 |
+
body {
|
205 |
+
background-color: dark;
|
206 |
+
color: white; /* ํฐํธ ์์ ์์ */
|
207 |
+
font-family: Arial, sans-serif; /* ํฐํธ ํจ๋ฐ๋ฆฌ ์์ */
|
208 |
+
}
|
209 |
+
"""
|
210 |
+
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
demo.launch()
|
215 |
+
|