Spaces:
Sleeping
Sleeping
""" | |
* Copyright (c) 2022, salesforce.com, inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: BSD-3-Clause | |
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
* By Junnan Li | |
""" | |
import warnings | |
warnings.filterwarnings("ignore") | |
import os | |
from urllib.parse import urlparse | |
import torch | |
from hydra.utils import get_original_cwd | |
from timm.models.hub import download_cached_file | |
from torch import nn | |
from transformers import BertTokenizer | |
from src.model.med import BertConfig, BertLMHeadModel, BertModel | |
from src.model.vit import VisionTransformer, interpolate_pos_embed | |
class BLIP_Base(nn.Module): | |
def __init__( | |
self, | |
med_config="configs/med_config.json", | |
image_size=224, | |
vit="base", | |
vit_grad_ckpt=False, | |
vit_ckpt_layer=0, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit( | |
vit, image_size, vit_grad_ckpt, vit_ckpt_layer | |
) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) | |
def forward(self, image, caption, mode): | |
assert mode in [ | |
"image", | |
"text", | |
"multimodal", | |
], "mode parameter must be image, text, or multimodal" | |
text = self.tokenizer(caption, return_tensors="pt").to(image.device) | |
if mode == "image": | |
# return image features | |
image_embeds = self.visual_encoder(image) | |
return image_embeds | |
elif mode == "text": | |
# return text features | |
text_output = self.text_encoder( | |
text.input_ids, | |
attention_mask=text.attention_mask, | |
return_dict=True, | |
mode="text", | |
) | |
return text_output.last_hidden_state | |
elif mode == "multimodal": | |
# return multimodel features | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
text.input_ids[:, 0] = self.tokenizer.enc_token_id | |
output = self.text_encoder( | |
text.input_ids, | |
attention_mask=text.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
return output.last_hidden_state | |
class BLIP_Decoder(nn.Module): | |
def __init__( | |
self, | |
med_config="configs/med_config.json", | |
image_size=384, | |
vit="base", | |
vit_grad_ckpt=False, | |
vit_ckpt_layer=0, | |
prompt="a picture of ", | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit( | |
vit, image_size, vit_grad_ckpt, vit_ckpt_layer | |
) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_decoder = BertLMHeadModel(config=med_config) | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1 | |
def forward(self, image, caption): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
text = self.tokenizer( | |
caption, | |
padding="longest", | |
truncation=True, | |
max_length=40, | |
return_tensors="pt", | |
).to(image.device) | |
text.input_ids[:, 0] = self.tokenizer.bos_token_id | |
decoder_targets = text.input_ids.masked_fill( | |
text.input_ids == self.tokenizer.pad_token_id, -100 | |
) | |
decoder_targets[:, : self.prompt_length] = -100 | |
decoder_output = self.text_decoder( | |
text.input_ids, | |
attention_mask=text.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
labels=decoder_targets, | |
return_dict=True, | |
) | |
loss_lm = decoder_output.loss | |
return loss_lm | |
def generate( | |
self, | |
image, | |
sample=False, | |
num_beams=3, | |
max_length=30, | |
min_length=10, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
): | |
image_embeds = self.visual_encoder(image) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
model_kwargs = { | |
"encoder_hidden_states": image_embeds, | |
"encoder_attention_mask": image_atts, | |
} | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to( | |
image.device | |
) | |
input_ids[:, 0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
# nucleus sampling | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs, | |
) | |
else: | |
# beam search | |
outputs = self.text_decoder.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs, | |
) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt) :]) | |
return captions | |
def blip_decoder(pretrained="", **kwargs): | |
model = BLIP_Decoder(**kwargs) | |
if pretrained: | |
model, msg = load_checkpoint(model, pretrained) | |
assert len(msg.missing_keys) == 0 | |
return model | |
def blip_feature_extractor(pretrained="", **kwargs): | |
model = BLIP_Base(**kwargs) | |
if pretrained: | |
model, msg = load_checkpoint(model, pretrained) | |
assert len(msg.missing_keys) == 0 | |
return model | |
def init_tokenizer(): | |
try: | |
bert_pth = os.path.join(get_original_cwd(), "bert-base-uncased") | |
tokenizer = BertTokenizer.from_pretrained(bert_pth) | |
except: | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]}) | |
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
return tokenizer | |
def create_vit( | |
vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0 | |
): | |
assert vit in ["base", "large"], "vit parameter must be base or large" | |
if vit == "base": | |
vision_width = 768 | |
visual_encoder = VisionTransformer( | |
img_size=image_size, | |
patch_size=16, | |
embed_dim=vision_width, | |
depth=12, | |
num_heads=12, | |
use_grad_checkpointing=use_grad_checkpointing, | |
ckpt_layer=ckpt_layer, | |
drop_path_rate=0 or drop_path_rate, | |
) | |
elif vit == "large": | |
vision_width = 1024 | |
visual_encoder = VisionTransformer( | |
img_size=image_size, | |
patch_size=16, | |
embed_dim=vision_width, | |
depth=24, | |
num_heads=16, | |
use_grad_checkpointing=use_grad_checkpointing, | |
ckpt_layer=ckpt_layer, | |
drop_path_rate=0.1 or drop_path_rate, | |
) | |
else: | |
raise NotImplementedError | |
return visual_encoder, vision_width | |
def is_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def load_checkpoint(model, url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location="cpu") | |
else: | |
raise RuntimeError(f"checkpoint {url_or_filename} is invalid") | |
state_dict = checkpoint["model"] | |
state_dict = remove_module(state_dict) | |
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed( | |
state_dict["visual_encoder.pos_embed"], model.visual_encoder | |
) | |
if "visual_encoder_m.pos_embed" in model.state_dict().keys(): | |
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed( | |
state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m | |
) | |
for key in model.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape != model.state_dict()[key].shape: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict, strict=False) | |
print("load checkpoint from %s" % url_or_filename) | |
return model, msg | |
def remove_module(state_dict): | |
new_state_dict = {} | |
for key in state_dict.keys(): | |
if key.startswith("module."): | |
new_state_dict[key[7:]] = state_dict[key] | |
else: | |
new_state_dict[key] = state_dict[key] | |
return new_state_dict | |