Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The Genmo team and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from ...utils.torch_utils import maybe_allow_in_graph | |
from ..attention import FeedForward | |
from ..attention_processor import Attention | |
from ..embeddings import PixArtAlphaTextProjection | |
from ..modeling_outputs import Transformer2DModelOutput | |
from ..modeling_utils import ModelMixin | |
from ..normalization import AdaLayerNormSingle, RMSNorm | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class LTXVideoAttentionProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is | |
used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector. | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
) | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.norm_q(query) | |
key = attn.norm_k(key) | |
if image_rotary_emb is not None: | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class LTXVideoRotaryPosEmbed(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
base_num_frames: int = 20, | |
base_height: int = 2048, | |
base_width: int = 2048, | |
patch_size: int = 1, | |
patch_size_t: int = 1, | |
theta: float = 10000.0, | |
) -> None: | |
super().__init__() | |
self.dim = dim | |
self.base_num_frames = base_num_frames | |
self.base_height = base_height | |
self.base_width = base_width | |
self.patch_size = patch_size | |
self.patch_size_t = patch_size_t | |
self.theta = theta | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
rope_interpolation_scale: Optional[Tuple[torch.Tensor, float, float]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
batch_size = hidden_states.size(0) | |
# Always compute rope in fp32 | |
grid_h = torch.arange(height, dtype=torch.float32, device=hidden_states.device) | |
grid_w = torch.arange(width, dtype=torch.float32, device=hidden_states.device) | |
grid_f = torch.arange(num_frames, dtype=torch.float32, device=hidden_states.device) | |
grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing="ij") | |
grid = torch.stack(grid, dim=0) | |
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) | |
if rope_interpolation_scale is not None: | |
grid[:, 0:1] = grid[:, 0:1] * rope_interpolation_scale[0] * self.patch_size_t / self.base_num_frames | |
grid[:, 1:2] = grid[:, 1:2] * rope_interpolation_scale[1] * self.patch_size / self.base_height | |
grid[:, 2:3] = grid[:, 2:3] * rope_interpolation_scale[2] * self.patch_size / self.base_width | |
grid = grid.flatten(2, 4).transpose(1, 2) | |
start = 1.0 | |
end = self.theta | |
freqs = self.theta ** torch.linspace( | |
math.log(start, self.theta), | |
math.log(end, self.theta), | |
self.dim // 6, | |
device=hidden_states.device, | |
dtype=torch.float32, | |
) | |
freqs = freqs * math.pi / 2.0 | |
freqs = freqs * (grid.unsqueeze(-1) * 2 - 1) | |
freqs = freqs.transpose(-1, -2).flatten(2) | |
cos_freqs = freqs.cos().repeat_interleave(2, dim=-1) | |
sin_freqs = freqs.sin().repeat_interleave(2, dim=-1) | |
if self.dim % 6 != 0: | |
cos_padding = torch.ones_like(cos_freqs[:, :, : self.dim % 6]) | |
sin_padding = torch.zeros_like(cos_freqs[:, :, : self.dim % 6]) | |
cos_freqs = torch.cat([cos_padding, cos_freqs], dim=-1) | |
sin_freqs = torch.cat([sin_padding, sin_freqs], dim=-1) | |
return cos_freqs, sin_freqs | |
class LTXVideoTransformerBlock(nn.Module): | |
r""" | |
Transformer block used in [LTX](https://huggingface.co/Lightricks/LTX-Video). | |
Args: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
qk_norm (`str`, defaults to `"rms_norm"`): | |
The normalization layer to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
cross_attention_dim: int, | |
qk_norm: str = "rms_norm_across_heads", | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = True, | |
attention_out_bias: bool = True, | |
eps: float = 1e-6, | |
elementwise_affine: bool = False, | |
): | |
super().__init__() | |
self.norm1 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
kv_heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
bias=attention_bias, | |
cross_attention_dim=None, | |
out_bias=attention_out_bias, | |
qk_norm=qk_norm, | |
processor=LTXVideoAttentionProcessor2_0(), | |
) | |
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
kv_heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
qk_norm=qk_norm, | |
processor=LTXVideoAttentionProcessor2_0(), | |
) | |
self.ff = FeedForward(dim, activation_fn=activation_fn) | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
batch_size = hidden_states.size(0) | |
norm_hidden_states = self.norm1(hidden_states) | |
num_ada_params = self.scale_shift_table.shape[0] | |
ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
attn_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=None, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + attn_hidden_states * gate_msa | |
attn_hidden_states = self.attn2( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_rotary_emb=None, | |
attention_mask=encoder_attention_mask, | |
) | |
hidden_states = hidden_states + attn_hidden_states | |
norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + ff_output * gate_mlp | |
return hidden_states | |
class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): | |
r""" | |
A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video). | |
Args: | |
in_channels (`int`, defaults to `128`): | |
The number of channels in the input. | |
out_channels (`int`, defaults to `128`): | |
The number of channels in the output. | |
patch_size (`int`, defaults to `1`): | |
The size of the spatial patches to use in the patch embedding layer. | |
patch_size_t (`int`, defaults to `1`): | |
The size of the tmeporal patches to use in the patch embedding layer. | |
num_attention_heads (`int`, defaults to `32`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
cross_attention_dim (`int`, defaults to `2048 `): | |
The number of channels for cross attention heads. | |
num_layers (`int`, defaults to `28`): | |
The number of layers of Transformer blocks to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
qk_norm (`str`, defaults to `"rms_norm_across_heads"`): | |
The normalization layer to use. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 128, | |
out_channels: int = 128, | |
patch_size: int = 1, | |
patch_size_t: int = 1, | |
num_attention_heads: int = 32, | |
attention_head_dim: int = 64, | |
cross_attention_dim: int = 2048, | |
num_layers: int = 28, | |
activation_fn: str = "gelu-approximate", | |
qk_norm: str = "rms_norm_across_heads", | |
norm_elementwise_affine: bool = False, | |
norm_eps: float = 1e-6, | |
caption_channels: int = 4096, | |
attention_bias: bool = True, | |
attention_out_bias: bool = True, | |
) -> None: | |
super().__init__() | |
out_channels = out_channels or in_channels | |
inner_dim = num_attention_heads * attention_head_dim | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) | |
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
self.rope = LTXVideoRotaryPosEmbed( | |
dim=inner_dim, | |
base_num_frames=20, | |
base_height=2048, | |
base_width=2048, | |
patch_size=patch_size, | |
patch_size_t=patch_size_t, | |
theta=10000.0, | |
) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
LTXVideoTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
cross_attention_dim=cross_attention_dim, | |
qk_norm=qk_norm, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
attention_out_bias=attention_out_bias, | |
eps=norm_eps, | |
elementwise_affine=norm_elementwise_affine, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_out = nn.LayerNorm(inner_dim, eps=1e-6, elementwise_affine=False) | |
self.proj_out = nn.Linear(inner_dim, out_channels) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_attention_mask: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
rope_interpolation_scale: Optional[Tuple[float, float, float]] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> torch.Tensor: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
batch_size = hidden_states.size(0) | |
hidden_states = self.proj_in(hidden_states) | |
temb, embedded_timestep = self.time_embed( | |
timestep.flatten(), | |
batch_size=batch_size, | |
hidden_dtype=hidden_states.dtype, | |
) | |
temb = temb.view(batch_size, -1, temb.size(-1)) | |
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1)) | |
for block in self.transformer_blocks: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] | |
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = hidden_states * (1 + scale) + shift | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
def apply_rotary_emb(x, freqs): | |
cos, sin = freqs | |
x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2] | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2) | |
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
return out | |